July 25, 2007

Problem 1. Real numbers $a_{1}, a_{2}, \ldots, a_{n}$ are given. For each $i(1 \leq i \leq n)$ define

$$
d_{i}=\max \left\{a_{j}: 1 \leq j \leq i\right\}-\min \left\{a_{j}: i \leq j \leq n\right\}
$$

and let

$$
d=\max \left\{d_{i}: 1 \leq i \leq n\right\} .
$$

(a) Prove that, for any real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{equation*}
\max \left\{\left|x_{i}-a_{i}\right|: 1 \leq i \leq n\right\} \geq \frac{d}{2} \tag{*}
\end{equation*}
$$

(b) Show that there are real numbers $x_{1} \leq x_{2} \leq \cdots \leq x_{n}$ such that equality holds in (*).

Problem 2. Consider five points A, B, C, D and E such that $A B C D$ is a parallelogram and $B C E D$ is a cyclic quadrilateral. Let ℓ be a line passing through A. Suppose that ℓ intersects the interior of the segment $D C$ at F and intersects line $B C$ at G. Suppose also that $E F=E G=E C$. Prove that ℓ is the bisector of angle $D A B$.

Problem 3. In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a clique if each two of them are friends. (In particular, any group of fewer than two competitors is a clique.) The number of members of a clique is called its size.

Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged in two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.

July 26, 2007

Problem 4. In triangle $A B C$ the bisector of angle $B C A$ intersects the circumcircle again at R, the perpendicular bisector of $B C$ at P, and the perpendicular bisector of $A C$ at Q. The midpoint of $B C$ is K and the midpoint of $A C$ is L. Prove that the triangles $R P K$ and $R Q L$ have the same area.

Problem 5. Let a and b be positive integers. Show that if $4 a b-1$ divides $\left(4 a^{2}-1\right)^{2}$, then $a=b$.

Problem 6. Let n be a positive integer. Consider

$$
S=\{(x, y, z): x, y, z \in\{0,1, \ldots, n\}, x+y+z>0\}
$$

as a set of $(n+1)^{3}-1$ points in three-dimensional space. Determine the smallest possible number of planes, the union of which contains S but does not include $(0,0,0)$.

