

Language: Hungarian

Language: Hungarian

Day: 1

2009. július 15. (szerda)

- **1. Feladat** Legyen n pozitív egész szám és legyenek a_1, \ldots, a_k ($k \ge 2$) olyan páronként különböző egész számok az $\{1, \ldots, n\}$ halmazból, hogy az $i = 1, \ldots, k-1$ értékek mindegyikére teljesül az, hogy n osztója $a_i(a_{i+1}-1)$ -nek. Bizonyítsuk be, hogy n nem osztója $a_k(a_1-1)$ -nek.
- **2. Feladat** Legyen az ABC háromszög körülírt körének középpontja O. Legyen P ill. Q a CA ill. AB oldal belső pontja. Legyenek K, L ill. M a BP, CQ ill. PQ szakaszok felezőpontjai, és legyen Γ a K, L, M pontokon áthaladó kör. Tegyük fel, hogy a PQ egyenes érintője a Γ körnek. Bizonyítsuk be, hogy OP = OQ.
- **3. Feladat** Tegyük fel, hogy s_1, s_2, s_3, \ldots pozitív egész számoknak olyan szigorúan növekvő sorozata, amelyre az

$$s_{s_1}, s_{s_2}, s_{s_3}, \dots$$
 és $s_{s_1+1}, s_{s_2+1}, s_{s_3+1}, \dots$

részsorozatok mindegyike számtani sorozat. Bizonyítsuk be, hogy s_1, s_2, s_3, \ldots maga is számtani sorozat.

Munkaidő: 4 és fél óra. Mindegyik feladat helyes megoldásáért 7 pont adható.

Language: Hungarian

Language: Hungarian

Day: **2**

2009. július 16. (csütörtök)

- **4. Feladat** Legyen az ABC háromszögben AB = AC. A $CAB \lhd$ ill. $ABC \lhd$ szögek szögfelezői a BC ill. CA oldalakat rendre a D ill. E pontokban metszik. Legyen K az ADC háromszög beírt körének a középpontja. Tegyük fel, hogy $BEK \lhd = 45^{\circ}$. Határozzuk meg a $CAB \lhd$ szög összes lehetséges értékeit.
- 5. Feladat Határozzuk meg az összes olyan f függvényt, ami a pozitív egész számok halmazát a pozitív egész számok halmazába képezi, és amire teljesül az, hogy teszőleges pozitív egész a és b értékekre van olyan nem-elfajuló háromszög, amelynek oldalhosszai

$$a, f(b) \text{ és } f(b+f(a)-1).$$

(Egy háromszög nem-elfajuló, ha csúcsai nincsenek egy egyenesen.)

6. Feladat Legyenek a_1, a_2, \ldots, a_n páronként különböző pozitív egész számok és legyen M egy olyan, pozitív egész számokból álló, n-1 elemű halmaz, ami nem tartalmazza az $s=a_1+a_2+\cdots+a_n$ számot. Egy szöcske a valós számegyenesen ugrál a 0 pontból kiindulva úgy, hogy n ugrást hajt végre jobbfelé, melyek hossza a_1, a_2, \ldots, a_n valamilyen sorrendben. Bizonyítsuk be, hogy a szöcske meg tudja választani az ugrások sorrendjét úgy, hogy ne ugorjon az M halmaz egyik elemére se.

Munkaidő: 4 és fél óra. Mindegyik feladat helyes megoldásáért 7 pont adható.