

Day: 1

Wednesday, July 7, 2010

Problem 1. Determine all functions $f : \mathbb{R} \to \mathbb{R}$ such that the equality

$$f\bigl(\lfloor x \rfloor y\bigr) = f(x)\bigl\lfloor f(y)\bigr\rfloor$$

holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z \rfloor$ denotes the greatest integer less than or equal to z.)

Problem 2. Let *I* be the incentre of triangle *ABC* and let Γ be its circumcircle. Let the line *AI* intersect Γ again at *D*. Let *E* be a point on the arc \widehat{BDC} and *F* a point on the side *BC* such that

$$\angle BAF = \angle CAE < \frac{1}{2} \angle BAC.$$

Finally, let G be the midpoint of the segment IF. Prove that the lines DG and EI intersect on Γ .

Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g: \mathbb{N} \to \mathbb{N}$ such that

$$(g(m)+n)(m+g(n))$$

is a perfect square for all $m, n \in \mathbb{N}$.

Day: 2

Thursday, July 8, 2010

Problem 4. Let P be a point inside the triangle ABC. The lines AP, BP and CP intersect the circumcircle Γ of triangle ABC again at the points K, L and M respectively. The tangent to Γ at C intersects the line AB at S. Suppose that SC = SP. Prove that MK = ML.

Problem 5. In each of six boxes $B_1, B_2, B_3, B_4, B_5, B_6$ there is initially one coin. There are two types of operation allowed:

- Type 1: Choose a nonempty box B_j with $1 \le j \le 5$. Remove one coin from B_j and add two coins to B_{j+1} .
- Type 2: Choose a nonempty box B_k with $1 \le k \le 4$. Remove one coin from B_k and exchange the contents of (possibly empty) boxes B_{k+1} and B_{k+2} .

Determine whether there is a finite sequence of such operations that results in boxes B_1, B_2, B_3, B_4, B_5 being empty and box B_6 containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^c} = a^{(b^c)}$.)

Problem 6. Let a_1, a_2, a_3, \ldots be a sequence of positive real numbers. Suppose that for some positive integer s, we have

 $a_n = \max\{a_k + a_{n-k} \mid 1 \le k \le n - 1\}$

for all n > s. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_n = a_\ell + a_{n-\ell}$ for all $n \geq N$.