Problem 1. Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that the equality

$$
f(\lfloor x\rfloor y)=f(x)\lfloor f(y)\rfloor
$$

holds for all $x, y \in \mathbb{R}$. (Here $\lfloor z\rfloor$ denotes the greatest integer less than or equal to z.)
Problem 2. Let I be the incentre of triangle $A B C$ and let Γ be its circumcircle. Let the line $A I$ intersect Γ again at D. Let E be a point on the $\operatorname{arc} \widehat{B D C}$ and F a point on the side $B C$ such that

$$
\angle B A F=\angle C A E<\frac{1}{2} \angle B A C .
$$

Finally, let G be the midpoint of the segment $I F$. Prove that the lines $D G$ and $E I$ intersect on Γ.
Problem 3. Let \mathbb{N} be the set of positive integers. Determine all functions $g: \mathbb{N} \rightarrow \mathbb{N}$ such that

$$
(g(m)+n)(m+g(n))
$$

is a perfect square for all $m, n \in \mathbb{N}$.

Problem 4. Let P be a point inside the triangle $A B C$. The lines $A P, B P$ and $C P$ intersect the circumcircle Γ of triangle $A B C$ again at the points K, L and M respectively. The tangent to Γ at C intersects the line $A B$ at S. Suppose that $S C=S P$. Prove that $M K=M L$.

Problem 5. In each of six boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}$ there is initially one coin. There are two types of operation allowed:

Type 1: Choose a nonempty box B_{j} with $1 \leq j \leq 5$. Remove one coin from B_{j} and add two coins to B_{j+1}.
Type 2: Choose a nonempty box B_{k} with $1 \leq k \leq 4$. Remove one coin from B_{k} and exchange the contents of (possibly empty) boxes B_{k+1} and B_{k+2}.

Determine whether there is a finite sequence of such operations that results in boxes $B_{1}, B_{2}, B_{3}, B_{4}, B_{5}$ being empty and box B_{6} containing exactly $2010^{2010^{2010}}$ coins. (Note that $a^{b^{c}}=a^{\left(b^{c}\right)}$.)

Problem 6. Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive real numbers. Suppose that for some positive integer s, we have

$$
a_{n}=\max \left\{a_{k}+a_{n-k} \mid 1 \leq k \leq n-1\right\}
$$

for all $n>s$. Prove that there exist positive integers ℓ and N, with $\ell \leq s$ and such that $a_{n}=a_{\ell}+a_{n-\ell}$ for all $n \geq N$.

