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Problems

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers suh that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

A2.

Let q be a real number. Gugu has a napkin with ten distint real numbers written

on it, and he writes the following three lines of real numbers on the blakboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two

(not neessarily distint) numbers on his napkin.

• In the seond line, Gugu writes down every number of the form qab, where a and b are

two (not neessarily distint) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where

a, b, c, d are four (not neessarily distint) numbers from the �rst line.

Determine all values of q suh that, regardless of the numbers on Gugu's napkin, every

number in the seond line is also a number in the third line.

(Austria)

A3.

Let S be a �nite set, and let A be the set of all funtions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g

for every g in A with g ‰ f . Show that fpT q “ T .

(India)

A4.

A sequene of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequene is bounded, i.e., there is a onstant M suh that |an| ď M for all

positive integers n.

(Russia)
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A5.

An integer n ě 3 is given. We all an n-tuple of real numbers px1, x2, . . . , xnq Shiny

if for eah permutation y1, y2, . . . , yn of these numbers we have

n´1ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest onstant K “ Kpnq suh that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

A6.

Find all funtions f : R Ñ R suh that

fpfpxqfpyqq ` fpx ` yq “ fpxyq

for all x, y P R.
(Albania)

A7.

Let a0, a1, a2, . . . be a sequene of integers and b0, b1, b2, . . . be a sequene of positive

integers suh that a0 “ 0, a1 “ 1, and

an`1 “
#
anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.

(Australia)

A8.

Assume that a funtion f : R Ñ R satis�es the following ondition:

For every x, y P R suh that

`
fpxq `y

˘`
fpyq `x

˘
ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.

(Netherlands)
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Combinatoris

C1.

A retangleR with odd integer side lengths is divided into small retangles with integer

side lengths. Prove that there is at least one among the small retangles whose distanes from

the four sides of R are either all odd or all even.

(Singapore)

C2.

Let n be a positive integer. De�ne a hameleon to be any sequene of 3n letters, with

exatly n ourrenes of eah of the letters a, b, and c. De�ne a swap to be the transposition of

two adjaent letters in a hameleon. Prove that for any hameleonX , there exists a hameleon Y

suh that X annot be hanged to Y using fewer than 3n2{2 swaps.

(Australia)

C3.

Sir Alex plays the following game on a row of 9 ells. Initially, all ells are empty. In

eah move, Sir Alex is allowed to perform exatly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty ell.

(2) Choose two (not neessarily adjaent) ells with the same number in them; denote that

number by 2j. Replae the number in one of the ells with 2j`1
and erase the number in

the other ell.

At the end of the game, one ell ontains the number 2n, where n is a given positive integer,

while the other ells are empty. Determine the maximum number of moves that Sir Alex ould

have made, in terms of n.

(Thailand)

C4.

Let N ě 2 be an integer. NpN ` 1q soer players, no two of the same height, stand

in a row in some order. Coah Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

C5.

A hunter and an invisible rabbit play a game in the Eulidean plane. The hunter's

starting point H0 oinides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.

(1) First the invisible rabbit moves seretly and unobserved from its urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.

(2) The hunter has a traking devie (e.g. dog) that returns an approximate position R1
n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.

Is there a strategy for the hunter that guarantees that after 109 suh rounds the distane

between the hunter and the rabbit is below 100?

(Austria)
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n ube is omposed of n3
unit ubes. Eah

unit ube is painted with one olor. For eah n ˆ n ˆ 1 box onsisting of n2
unit ubes (of any

of the three possible orientations), we onsider the set of the olors present in that box (eah

olor is listed only one). This way, we get 3n sets of olors, split into three groups aording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of olors that are

present.

(Russia)

C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . qlooooooooooooooooooomooooooooooooooooooon
A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . qlooooooooooooooooooomooooooooooooooooooon
B appears a times

.

(U.S.A.)

C8.

Let n be a given positive integer. In the Cartesian plane, eah lattie point

with nonnegative oordinates initially ontains a butter�y, and there are no other butter-

�ies. The neighborhood of a lattie point c onsists of all lattie points within the axis-aligned

p2n` 1q ˆ p2n` 1q square entered at c, apart from c itself. We all a butter�y lonely, rowded,

or omfortable, depending on whether the number of butter�ies in its neighborhood N is re-

spetively less than, greater than, or equal to half of the number of lattie points in N .

Every minute, all lonely butter�ies �y away simultaneously. This proess goes on for as

long as there are any lonely butter�ies. Assuming that the proess eventually stops, determine

the number of omfortable butter�ies at the �nal state.

(Bulgaria)
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Geometry

G1.

Let ABCDE be a onvex pentagon suh that AB “ BC “ CD, =EAB “ =BCD,

and =EDC “ =CBA. Prove that the perpendiular line from E to BC and the line seg-

ments AC and BD are onurrent.

(Italy)

G2.

Let R and S be distint points on irle Ω, and let t denote the tangent line to Ω

at R. Point R1
is the re�etion of R with respet to S. A point I is hosen on the smaller ar

RS of Ω so that the irumirle Γ of triangle ISR1
intersets t at two di�erent points. Denote

by A the ommon point of Γ and t that is losest to R. Line AI meets Ω again at J . Show

that JR1
is tangent to Γ.

(Luxembourg)

G3.

Let O be the irumenter of an aute salene triangle ABC. Line OA intersets the

altitudes of ABC through B and C at P and Q, respetively. The altitudes meet at H . Prove

that the irumenter of triangle PQH lies on a median of triangle ABC.

(Ukraine)

G4.

In triangle ABC, let ω be the exirle opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respetively. The irle AEF intersets line BC

at P and Q. Let M be the midpoint of AD. Prove that the irle MPQ is tangent to ω.

(Denmark)

G5.

Let ABCC1B1A1 be a onvex hexagon suh that AB “ BC, and suppose that the

line segments AA1, BB1, and CC1 have the same perpendiular bisetor. Let the diagonals

AC1 and A1C meet at D, and denote by ω the irle ABC. Let ω interset the irle A1BC1

again at E ‰ B. Prove that the lines BB1 and DE interset on ω.

(Ukraine)

G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verties of A that lie inside B or on its boundary are onseutive.

(That is, prove that there exists a line separating those verties of A that lie inside B or on

its boundary from the other verties of A.)

(Czeh Republi)

G7.

A onvex quadrilateral ABCD has an insribed irle with enter I. Let Ia, Ib, Ic,

and Id be the inenters of the triangles DAB, ABC, BCD, and CDA, respetively. Suppose

that the ommon external tangents of the irles AIbId and CIbId meet at X , and the ommon

external tangents of the irles BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

G8.

There are 2017 mutually external irles drawn on a blakboard, suh that no two

are tangent and no three share a ommon tangent. A tangent segment is a line segment that

is a ommon tangent to two irles, starting at one tangent point and ending at the other one.

Luiano is drawing tangent segments on the blakboard, one at a time, so that no tangent

segment intersets any other irles or previously drawn tangent segments. Luiano keeps

drawing tangent segments until no more an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)
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Number Theory

N1.

The sequene a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whih there is at least one number a suh that an “ a for

in�nitely many values of n.

(South Afria)

N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in eah move, the urrent player hooses an index i in the set t0, 1, . . . , p´1u
that was not hosen before by either of the two players and then hooses an element ai of the

set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indies

i P t0, 1, . . . , p ´ 1u have been hosen. Then the following number is omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moroo)

N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n suh that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)

(Thailand)

N4.

Call a rational number short if it has �nitely many digits in its deimal expansion.

For a positive integer m, we say that a positive integer t is m-tasti if there exists a number

c P t1, 2, 3, . . . , 2017u suh that

10t ´ 1

c ¨ m is short, and suh that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

N5.

Find all pairs pp, qq of prime numbers with p ą q for whih the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)
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N6.

Find the smallest positive integer n, or show that no suh n exists, with the following

property: there are in�nitely many distint n-tuples of positive rational numbers pa1, a2, . . . , anq
suh that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

are integers.

(Singapore)

N7.

Say that an ordered pair px, yq of integers is an irreduible lattie point if x and

y are relatively prime. For any �nite set S of irreduible lattie points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer oe�ients, of degree at least 1,

suh that fpx, yq “ 1 for eah px, yq in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a funtion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)
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Solutions

Algebra

A1.

Let a1, a2, . . . , an, k, and M be positive integers suh that

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
“ k and a1a2 . . . an “ M.

If M ą 1, prove that the polynomial

P pxq “ Mpx ` 1qk ´ px ` a1qpx ` a2q ¨ ¨ ¨ px ` anq

has no positive roots.

(Trinidad and Tobago)

Solution 1. We �rst prove that, for x ą 0,

aipx ` 1q1{ai ď x ` ai, (1)

with equality if and only if ai “ 1. It is lear that equality ours if ai “ 1.

If ai ą 1, the AM�GM inequality applied to a single opy of x ` 1 and ai ´ 1 opies of 1

yields

px ` 1q `
ai´1 oneshkkkkkkkikkkkkkkj

1 ` 1 ` ¨ ¨ ¨ ` 1

ai
ě ai

a
px ` 1q ¨ 1ai´1 ùñ aipx ` 1q1{ai ď x ` ai.

Sine x ` 1 ą 1, the inequality is strit for ai ą 1.

Multiplying the inequalities (1) for i “ 1, 2, . . . , n yields

nź

i“1

aipx ` 1q1{ai ď
nź

i“1

px ` aiq ðñ Mpx ` 1q
řn

i“1
1{ai ´

nź

i“1

px ` aiq ď 0 ðñ P pxq ď 0

with equality i� ai “ 1 for all i P t1, 2, . . . , nu. But this implies M “ 1, whih is not possible.

Hene P pxq ă 0 for all x P R`
, and P has no positive roots.

Comment 1. Inequality (1) an be obtained in several ways. For instane, we may also use the

binomial theorem: sine ai ě 1,

ˆ
1 ` x

ai

˙ai

“
aiÿ

j“0

ˆ
ai

j

˙ˆ
x

ai

˙j

ě
ˆ
ai

0

˙
`
ˆ
ai

1

˙
¨ x

ai
“ 1 ` x.

Both proofs of (1) mimi proofs to Bernoulli's inequality for a positive integer exponent ai; we an

use this inequality diretly: ˆ
1 ` x

ai

˙ai

ě 1 ` ai ¨ x

ai
“ 1 ` x,

and so

x ` ai “ ai

ˆ
1 ` x

ai

˙
ě aip1 ` xq1{ai ,

or its (reversed) formulation, with exponent 1{ai ď 1:

p1 ` xq1{ai ď 1 ` 1

ai
¨ x “ x ` ai

ai
ùñ aip1 ` xq1{ai ď x ` ai.
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Solution 2. We will prove that, in fat, all oe�ients of the polynomial P pxq are non-positive,
and at least one of them is negative, whih implies that P pxq ă 0 for x ą 0.

Indeed, sine aj ě 1 for all j and aj ą 1 for some j (sine a1a2 . . . an “ M ą 1), we have

k “ 1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
ă n, so the oe�ient of xn

in P pxq is ´1 ă 0. Moreover, the oe�ient

of xr
in P pxq is negative for k ă r ď n “ degpP q.

For 0 ď r ď k, the oe�ient of xr
in P pxq is

M ¨
ˆ
k

r

˙
´

ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
“ a1a2 ¨ ¨ ¨ an ¨

ˆ
k

r

˙
´

ÿ

1ďi1ăi2ă¨¨¨ăin´rďn

ai1ai2 ¨ ¨ ¨ ain´r
,

whih is non-positive i� ˆ
k

r

˙
ď

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
. (2)

We will prove (2) by indution on r. For r “ 0 it is an equality beause the onstant term of

P pxq is P p0q “ 0, and if r “ 1, (2) beomes k “ řn

i“1

1

ai
. For r ą 1, if (2) is true for a given

r ă k, we have

ˆ
k

r ` 1

˙
“ k ´ r

r ` 1
¨
ˆ
k

r

˙
ď k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
,

and it su�es to prove that

k ´ r

r ` 1
¨

ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
ď

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ ajrajr`1

,

whih is equivalent to

ˆ
1

a1
` 1

a2
`¨¨ ¨` 1

an
´r

˙ ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ajr
ďpr`1q

ÿ

1ďj1ă¨¨¨ăjrăjr`1ďn

1

aj1aj2 ¨ ¨ ¨ajrajr`1

.

Sine there are r ` 1 ways to hoose a fration

1

aji
from

1

aj1aj2 ¨¨¨ajrajr`1

to fator out, every

term

1

aj1aj2 ¨¨¨ajrajr`1

in the right hand side appears exatly r ` 1 times in the produt

ˆ
1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙ ÿ

1ďj1ăj2ă¨¨¨ăjrďn

1

aj1aj2 ¨ ¨ ¨ ajr
.

Hene all terms in the right hand side anel out.

The remaining terms in the left hand side an be grouped in sums of the type

1

a2j1aj2 ¨ ¨ ¨ ajr
` 1

aj1a
2

j2
¨ ¨ ¨ ajr

` ¨ ¨ ¨ ` 1

aj1aj2 ¨ ¨ ¨ a2jr
´ r

aj1aj2 ¨ ¨ ¨ ajr

“ 1

aj1aj2 ¨ ¨ ¨ ajr

ˆ
1

aj1
` 1

aj2
` ¨ ¨ ¨ ` 1

ajr
´ r

˙
,

whih are all non-positive beause ai ě 1 ùñ 1

ai
ď 1, i “ 1, 2, . . . , n.

Comment 2. The result is valid for any real numbers ai, i “ 1, 2, . . . , n with ai ě 1 and produt M

greater than 1. A variation of Solution 1, namely using weighted AM�GM (or the Bernoulli inequality

for real exponents), atually proves that P pxq ă 0 for x ą ´1 and x ‰ 0.
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A2.

Let q be a real number. Gugu has a napkin with ten distint real numbers written on

it, and he writes the following three lines of real numbers on the blakboard:

• In the �rst line, Gugu writes down every number of the form a´ b, where a and b are two

(not neessarily distint) numbers on his napkin.

• In the seond line, Gugu writes down every number of the form qab, where a and b are

two (not neessarily distint) numbers from the �rst line.

• In the third line, Gugu writes down every number of the form a2 ` b2 ´ c2 ´ d2, where

a, b, c, d are four (not neessarily distint) numbers from the �rst line.

Determine all values of q suh that, regardless of the numbers on Gugu's napkin, every

number in the seond line is also a number in the third line.

(Austria)

Answer: ´2, 0, 2.

Solution 1. Call a number q good if every number in the seond line appears in the third line

unonditionally. We �rst show that the numbers 0 and ˘2 are good. The third line neessarily

ontains 0, so 0 is good. For any two numbers a, b in the �rst line, write a “ x´y and b “ u´v,

where x, y, u, v are (not neessarily distint) numbers on the napkin. We may now write

2ab “ 2px ´ yqpu ´ vq “ px ´ vq2 ` py ´ uq2 ´ px ´ uq2 ´ py ´ vq2,

whih shows that 2 is good. By negating both sides of the above equation, we also see that ´2

is good.

We now show that ´2, 0, and 2 are the only good numbers. Assume for sake of ontradition

that q is a good number, where q R t´2, 0, 2u. We now onsider some partiular hoies of

numbers on Gugu's napkin to arrive at a ontradition.

Assume that the napkin ontains the integers 1, 2, . . . , 10. Then, the �rst line ontains

the integers ´9,´8, . . . , 9. The seond line then ontains q and 81q, so the third line must

also ontain both of them. But the third line only ontains integers, so q must be an integer.

Furthermore, the third line ontains no number greater than 162 “ 92 ` 92 ´ 02 ´ 02 or less

than ´162, so we must have ´162 ď 81q ď 162. This shows that the only possibilities for q

are ˘1.

Now assume that q “ ˘1. Let the napkin ontain 0, 1, 4, 8, 12, 16, 20, 24, 28, 32. The �rst

line ontains ˘1 and ˘4, so the seond line ontains ˘4. However, for every number a in the

�rst line, a ı 2 pmod 4q, so we may onlude that a2 ” 0, 1 pmod 8q. Consequently, every

number in the third line must be ongruent to ´2,´1, 0, 1, 2 pmod 8q; in partiular, ˘4 annot

be in the third line, whih is a ontradition.

Solution 2. Let q be a good number, as de�ned in the �rst solution, and de�ne the polynomial

P px1, . . . , x10q as
ź

iăj

pxi ´ xjq
ź

aiPS

`
qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2

˘
,

where S “ tx1, . . . , x10u.
We laim that P px1, . . . , x10q “ 0 for every hoie of real numbers px1, . . . , x10q. If any two

of the xi are equal, then P px1, . . . , x10q “ 0 trivially. If no two are equal, assume that Gugu

has those ten numbers x1, . . . , x10 on his napkin. Then, the number qpx1 ´ x2qpx3 ´ x4q is in

the seond line, so we must have some a1, . . . , a8 so that

qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 “ 0,
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and hene P px1, . . . , x10q “ 0.

Sine every polynomial that evaluates to zero everywhere is the zero polynomial, and the

produt of two nonzero polynomials is neessarily nonzero, we may de�ne F suh that

F px1, . . . , x10q ” qpx1 ´ x2qpx3 ´ x4q ´ pa1 ´ a2q2 ´ pa3 ´ a4q2 ` pa5 ´ a6q2 ` pa7 ´ a8q2 ” 0 (1)

for some partiular hoie ai P S.

Eah of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to at most one of the four

sets tx1, x3u, tx2, x3u, tx1, x4u, and tx2, x4u. Thus, without loss of generality, we may assume

that at most one of the sets ta1, a2u, ta3, a4u, ta5, a6u, and ta7, a8u is equal to tx1, x3u. Let

u1, u3, u5, u7 be the indiator funtions for this equality of sets: that is, ui “ 1 if and only if

tai, ai`1u “ tx1, x3u. By assumption, at least three of the ui are equal to 0.

We now ompute the oe�ient of x1x3 in F . It is equal to q ` 2pu1 ` u3 ´ u5 ´ u7q “ 0,

and sine at least three of the ui are zero, we must have that q P t´2, 0, 2u, as desired.
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A3.

Let S be a �nite set, and let A be the set of all funtions from S to S. Let f be an

element of A, and let T “ fpSq be the image of S under f . Suppose that f ˝ g ˝ f ‰ g ˝ f ˝ g

for every g in A with g ‰ f . Show that fpT q “ T .

(India)

Solution. For n ě 1, denote the n-th omposition of f with itself by

fn def“ f ˝ f ˝ ¨ ¨ ¨ ˝ flooooooomooooooon
n times

.

By hypothesis, if g P A satis�es f ˝ g ˝ f “ g ˝ f ˝ g, then g “ f . A natural idea is to try to

plug in g “ fn
for some n in the expression f ˝ g ˝ f “ g ˝ f ˝ g in order to get fn “ f , whih

solves the problem:

Claim. If there exists n ě 3 suh that fn`2 “ f 2n`1
, then the restrition f : T Ñ T of f to T

is a bijetion.

Proof. Indeed, by hypothesis, fn`2 “ f 2n`1 ðñ f ˝ fn ˝ f “ fn ˝ f ˝ fn ùñ fn “ f .

Sine n ´ 2 ě 1, the image of fn´2
is ontained in T “ fpSq, hene fn´2

restrits to a funtion

fn´2 : T Ñ T . This is the inverse of f : T Ñ T . In fat, given t P T , say t “ fpsq with s P S,

we have

t “ fpsq “ fnpsq “ fn´2pfptqq “ fpfn´2ptqq, i.e., fn´2 ˝ f “ f ˝ fn´2 “ id on T

(here id stands for the identity funtion). Hene, the restrition f : T Ñ T of f to T is bijetive

with inverse given by fn´2 : T Ñ T . l

It remains to show that n as in the laim exists. For that, de�ne

Sm
def“ fmpSq pSm is image of fmq

Clearly the image of fm`1
is ontained in the image of fm

, i.e., there is a desending hain of

subsets of S

S Ě S1 Ě S2 Ě S3 Ě S4 Ě ¨ ¨ ¨ ,
whih must eventually stabilise sine S is �nite, i.e., there is a k ě 1 suh that

Sk “ Sk`1 “ Sk`2 “ Sk`3 “ ¨ ¨ ¨ def“ S8.

Hene f restrits to a surjetive funtion f : S8 Ñ S8, whih is also bijetive sine S8 Ď S is

�nite. To sum up, f : S8 Ñ S8 is a permutation of the elements of the �nite set S8, hene

there exists an integer r ě 1 suh that f r “ id on S8 (for example, we may hoose r “ |S8|!).
In other words,

fm`r “ fm
on S for all m ě k. p˚q

Clearly, p˚q also implies that fm`tr “ fm
for all integers t ě 1 and m ě k. So, to �nd n as in

the laim and �nish the problem, it is enough to hoose m and t in order to ensure that there

exists n ě 3 satisfying

#
2n ` 1 “ m ` tr

n ` 2 “ m
ðñ

#
m “ 3 ` tr

n “ m ´ 2.

This an be learly done by hoosing m large enough with m ” 3 pmod rq. For instane, we

may take n “ 2kr ` 1, so that

fn`2 “ f 2kr`3 “ f 4kr`3 “ f 2n`1

where the middle equality follows by p˚q sine 2kr ` 3 ě k.
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A4.

A sequene of real numbers a1, a2, . . . satis�es the relation

an “ ´ max
i`j“n

pai ` ajq for all n ą 2017.

Prove that this sequene is bounded, i.e., there is a onstant M suh that |an| ď M for all

positive integers n.

(Russia)

Solution 1. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequenes pmnq and pMnq are nondereasing. We need to prove that both are

bounded.

Consider an arbitrary n ą D; our �rst aim is to bound an in terms of mn and Mn.

(i) There exist indies p and q suh that an “ ´pap ` aqq and p ` q “ n. Sine ap, aq ď Mn, we

have an ě ´2Mn.

(ii) On the other hand, hoose an index k ă n suh that ak “ Mn. Then, we have

an “ ´max
ℓăn

pan´ℓ ` aℓq ď ´pan´k ` akq “ ´an´k ´ Mn ď mn ´ Mn.

Summarizing (i) and (ii), we get

´2Mn ď an ď mn ´ Mn,

whene

mn ď mn`1 ď maxtmn, 2Mnu and Mn ď Mn`1 ď maxtMn, mn ´ Mnu. (1)

Now, say that an index n ą D is luky if mn ď 2Mn. Two ases are possible.

Case 1. Assume that there exists a luky index n. In this ase, (1) yields mn`1 ď 2Mn and

Mn ď Mn`1 ď Mn. Therefore, Mn`1 “ Mn and mn`1 ď 2Mn “ 2Mn`1. So, the index n ` 1

is also luky, and Mn`1 “ Mn. Applying the same arguments repeatedly, we obtain that all

indies k ą n are luky (i.e., mk ď 2Mk for all these indies), and Mk “ Mn for all suh indies.

Thus, all of the mk and Mk are bounded by 2Mn.

Case 2. Assume now that there is no luky index, i.e., 2Mn ă mn for all n ą D. Then (1)

shows that for all n ą D we have mn ď mn`1 ď mn, so mn “ mD`1 for all n ą D. Sine

Mn ă mn{2 for all suh indies, all of the mn and Mn are bounded by mD`1.

Thus, in both ases the sequenes pmnq and pMnq are bounded, as desired.

Solution 2. As in the previous solution, let D “ 2017. If the sequene is bounded above, say,

by Q, then we have that an ě minta1, . . . , aD,´2Qu for all n, so the sequene is bounded. As-

sume for sake of ontradition that the sequene is not bounded above. Let ℓ “ minta1, . . . , aDu,
and L “ maxta1, . . . , aDu. Call an index n good if the following riteria hold:

an ą ai for eah i ă n, an ą ´2ℓ, and n ą D (2)

We �rst show that there must be some good index n. By assumption, we may take an

index N suh that aN ą maxtL,´2ℓu. Choose n minimally suh that an “ maxta1, a2, . . . , aNu.
Now, the �rst ondition in (2) is satis�ed beause of the minimality of n, and the seond and

third onditions are satis�ed beause an ě aN ą L,´2ℓ, and L ě ai for every i suh that

1 ď i ď D.
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Let n be a good index. We derive a ontradition. We have that

an ` au ` av ď 0, (3)

whenever u ` v “ n.

We de�ne the index u to maximize au over 1 ď u ď n´ 1, and let v “ n´u. Then, we note

that au ě av by the maximality of au.

Assume �rst that v ď D. Then, we have that

aN ` 2ℓ ď 0,

beause au ě av ě ℓ. But this ontradits our assumption that an ą ´2ℓ in the seond riteria

of (2).

Now assume that v ą D. Then, there exist some indies w1, w2 summing up to v suh that

av ` aw1
` aw2

“ 0.

But ombining this with (3), we have

an ` au ď aw1
` aw2

.

Beause an ą au, we have that maxtaw1
, aw2

u ą au. But sine eah of the wi is less than v, this

ontradits the maximality of au.

Comment 1. We present two harder versions of this problem below.

Version 1. Let a1, a2, . . . be a sequene of numbers that satis�es the relation

an “ ´ max
i`j`k“n

pai ` aj ` akq for all n ą 2017.

Then, this sequene is bounded.

Proof. Set D “ 2017. Denote

Mn “ max
kăn

ak and mn “ ´min
kăn

ak “ max
kăn

p´akq.

Clearly, the sequenes pmnq and pMnq are nondereasing. We need to prove that both are bounded.

Consider an arbitrary n ą 2D; our �rst aim is to bound an in terms of mi and Mi. Set k “ tn{2u.

(i) Choose indies p, q, and r suh that an “ ´pap ` aq ` arq and p ` q ` r “ n. Without loss of

generality, p ě q ě r.

Assume that p ě k ` 1pą Dq; then p ą q ` r. Hene

´ap “ max
i1`i2`i3“p

pai1 ` ai2 ` ai3q ě aq ` ar ` ap´q´r,

and therefore an “ ´pap ` aq ` arq ě paq ` ar ` ap´q´rq ´ aq ´ ar “ ap´q´r ě ´mn.

Otherwise, we have k ě p ě q ě r. Sine n ă 3k, we have r ă k. Then ap, aq ď Mk`1 and

ar ď Mk, whene an ě ´2Mk`1 ´ Mk.

Thus, in any ase an ě ´maxtmn, 2Mk`1 ` Mku.
(ii) On the other hand, hoose p ď k and q ď k´1 suh that ap “ Mk`1 and aq “ Mk. Then p`q ă n,

so an ď ´pap ` aq ` an´p´qq “ ´an´p´q ´ Mk`1 ´ Mk ď mn ´ Mk`1 ´ Mk.

To summarize,

´maxtmn, 2Mk`1 ` Mku ď an ď mn ´ Mk`1 ´ Mk,

whene

mn ď mn`1 ď maxtmn, 2Mk`1 ` Mku and Mn ď Mn`1 ď maxtMn,mn ´ Mk`1 ´ Mku. (4)
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Now, say that an index n ą 2D is luky if mn ď 2Mtn{2u`1 ` Mtn{2u. Two ases are possible.

Case 1. Assume that there exists a luky index n; set k “ tn{2u. In this ase, (4) yields mn`1 ď
2Mk`1 ` Mk and Mn ď Mn`1 ď Mn (the last relation holds, sine mn ´ Mk`1 ´ Mk ď p2Mk`1 `
Mkq ´Mk`1 ´Mk “ Mk`1 ď Mn). Therefore, Mn`1 “ Mn and mn`1 ď 2Mk`1 `Mk; the last relation

shows that the index n ` 1 is also luky.

Thus, all indies N ą n are luky, and MN “ Mn ě mN{3, whene all the mN and MN are

bounded by 3Mn.

Case 2. Conversely, assume that there is no luky index, i.e., 2Mtn{2u`1 `Mtn{2u ă mn for all n ą 2D.

Then (4) shows that for all n ą 2D we have mn ď mn`1 ď mn, i.e., mN “ m2D`1 for all N ą 2D.

Sine MN ă m2N`1{3 for all suh indies, all the mN and MN are bounded by m2D`1.

Thus, in both ases the sequenes pmnq and pMnq are bounded, as desired. l

Version 2. Let a1, a2, . . . be a sequene of numbers that satis�es the relation

an “ ´ max
i1`¨¨¨`ik“n

pai1 ` ¨ ¨ ¨ ` aikq for all n ą 2017.

Then, this sequene is bounded.

Proof. As in the solutions above, let D “ 2017. If the sequene is bounded above, say, by Q, then we

have that an ě minta1, . . . , aD,´kQu for all n, so the sequene is bounded. Assume for sake of ontra-

dition that the sequene is not bounded above. Let ℓ “ minta1, . . . , aDu, and L “ maxta1, . . . , aDu.
Call an index n good if the following riteria hold:

an ą ai for eah i ă n, an ą ´kℓ, and n ą D (5)

We �rst show that there must be some good index n. By assumption, we may take an index N

suh that aN ą maxtL,´kℓu. Choose n minimally suh that an “ maxta1, a2, . . . , aNu. Now, the �rst
ondition is satis�ed beause of the minimality of n, and the seond and third onditions are satis�ed

beause an ě aN ą L,´kℓ, and L ě ai for every i suh that 1 ď i ď D.

Let n be a good index. We derive a ontradition. We have that

an ` av1 ` ¨ ¨ ¨ ` avk ď 0, (6)

whenever v1 ` ¨ ¨ ¨ ` vk “ n.

We de�ne the sequene of indies v1, . . . , vk´1 to greedily maximize av1 , then av2 , and so forth,

seleting only from indies suh that the equation v1 ` ¨ ¨ ¨ `vk “ n an be satis�ed by positive integers

v1, . . . , vk. More formally, we de�ne them indutively so that the following riteria are satis�ed by

the vi:

1. 1 ď vi ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
2. avi is maximal among all hoies of vi from the �rst riteria.

First of all, we note that for eah i, the �rst riteria is always satis�able by some vi, beause we

are guaranteed that

vi´1 ď n ´ pk ´ pi ´ 1qq ´ pv1 ` ¨ ¨ ¨ ` vi´2q,
whih implies

1 ď n ´ pk ´ iq ´ pv1 ` ¨ ¨ ¨ ` vi´1q.
Seondly, the sum v1 ` ¨ ¨ ¨ ` vk´1 is at most n ´ 1. De�ne vk “ n ´ pv1 ` ¨ ¨ ¨ ` vk´1q. Then, (6)

is satis�ed by the vi. We also note that avi ě avj for all i ă j; otherwise, in the de�nition of vi, we

ould have seleted vj instead.

Assume �rst that vk ď D. Then, from (6), we have that

an ` kℓ ď 0,

by using that av1 ě ¨ ¨ ¨ ě avk ě ℓ. But this ontradits our assumption that an ą ´kℓ in the seond

riteria of (5).
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Now assume that vk ą D, and then we must have some indies w1, . . . , wk summing up to vk suh

that

avk ` aw1
` ¨ ¨ ¨ ` awk

“ 0.

But ombining this with (6), we have

an ` av1 ` ¨ ¨ ¨ ` avk´1
ď aw1

` ¨ ¨ ¨ ` awk
.

Beause an ą av1 ě ¨ ¨ ¨ ě avk´1
, we have that maxtaw1

, . . . , awk
u ą avk´1

. But sine eah of the wi

is less than vk, in the de�nition of the vk´1 we ould have hosen one of the wi instead, whih is a

ontradition. l

Comment 2. It seems that eah sequene satisfying the ondition in Version 2 is eventually periodi,

at least when its terms are integers.

However, up to this moment, the Problem Seletion Committee is not aware of a proof for this fat

(even in the ase k “ 2).
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A5.

An integer n ě 3 is given. We all an n-tuple of real numbers px1, x2, . . . , xnq Shiny if

for eah permutation y1, y2, . . . , yn of these numbers we have

n´1ÿ

i“1

yiyi`1 “ y1y2 ` y2y3 ` y3y4 ` ¨ ¨ ¨ ` yn´1yn ě ´1.

Find the largest onstant K “ Kpnq suh that

ÿ

1ďiăjďn

xixj ě K

holds for every Shiny n-tuple px1, x2, . . . , xnq.
(Serbia)

Answer: K “ ´pn ´ 1q{2.
Solution 1. First of all, we show that we may not take a larger onstant K. Let t be a positive

number, and take x2 “ x3 “ ¨ ¨ ¨ “ t and x1 “ ´1{p2tq. Then, every produt xixj (i ‰ j) is

equal to either t2 or ´1{2. Hene, for every permutation yi of the xi, we have

y1y2 ` ¨ ¨ ¨ ` yn´1yn ě pn ´ 3qt2 ´ 1 ě ´1.

This justi�es that the n-tuple px1, . . . , xnq is Shiny. Now, we have
ÿ

iăj

xixj “ ´n ´ 1

2
` pn ´ 1qpn ´ 2q

2
t2.

Thus, as t approahes 0 from above,

ř
iăj xixj gets arbitrarily lose to ´pn ´ 1q{2. This shows

that we may not take K any larger than ´pn ´ 1q{2. It remains to show that

ř
iăj xixj ě

´pn ´ 1q{2 for any Shiny hoie of the xi.

From now onward, assume that px1, . . . , xnq is a Shiny n-tuple. Let the zi (1 ď i ď n) be

some permutation of the xi to be hosen later. The indies for zi will always be taken modulo n.

We will �rst split up the sum

ř
iăj xixj “ ř

iăj zizj into tpn ´ 1q{2u expressions, eah of the

form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi, and some leftover terms. More

spei�ally, write

ÿ

iăj

zizj “
n´1ÿ

q“0

ÿ

i`j”q pmod nq
iıj pmod nq

zizj “
tn´1

2
uÿ

p“1

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj ` L, (1)

where L “ z1z´1 ` z2z´2 ` ¨ ¨ ¨ ` zpn´1q{2z´pn´1q{2 if n is odd, and L “ z1z´1 ` z1z´2 ` z2z´2 `
¨ ¨ ¨ ` zpn´2q{2z´n{2 if n is even. We note that for eah p “ 1, 2, . . . , tpn ´ 1q{2u, there is some

permutation yi of the zi suh that

ÿ

i`j”2p´1,2p pmod nq
iıj pmod nq

zizj “
n´1ÿ

k“1

ykyk`1,

beause we may hoose y2i´1 “ zi`p´1 for 1 ď i ď pn ` 1q{2 and y2i “ zp´i for 1 ď i ď n{2.
We show (1) graphially for n “ 6, 7 in the diagrams below. The edges of the graphs eah

represent a produt zizj, and the dashed and dotted series of lines represents the sum of the

edges, whih is of the form y1y2 ` ¨ ¨ ¨ ` yn´1yn for some permutation yi of the zi preisely when

the series of lines is a Hamiltonian path. The �lled edges represent the summands of L.
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Now, beause the zi are Shiny, we have that (1) yields the following bound:

ÿ

iăj

zizj ě ´
Z
n ´ 1

2

^
` L.

It remains to show that, for eah n, there exists some permutation zi of the xi suh that L ě 0

when n is odd, and L ě ´1{2 when n is even. We now split into ases based on the parity of n

and provide onstrutions of the permutations zi.

Sine we have not made any assumptions yet about the xi, we may now assume without

loss of generality that

x1 ď x2 ď ¨ ¨ ¨ ď xk ď 0 ď xk`1 ď ¨ ¨ ¨ ď xn. (2)

Case 1: n is odd.

Without loss of generality, assume that k (from (2)) is even, beause we may negate all

the xi if k is odd. We then have x1x2, x3x4, . . . , xn´2xn´1 ě 0 beause the fators are of the

same sign. Let L “ x1x2 ` x3x4 ` ¨ ¨ ¨ ` xn´2xn´1 ě 0. We hoose our zi so that this de�nition

of L agrees with the sum of the leftover terms in (1). Relabel the xi as zi suh that

tz1, zn´1u, tz2, zn´2u, . . . , tzpn´1q{2, zpn`1q{2u

are some permutation of

tx1, x2u, tx3, x4u, . . . , txn´2, xn´1u,
and zn “ xn. Then, we have L “ z1zn´1 ` ¨ ¨ ¨ ` zpn´1q{2zpn`1q{2, as desired.

Case 2: n is even.

Let L “ x1x2 `x2x3 ` ¨ ¨ ¨ `xn´1xn. Assume without loss of generality k ‰ 1. Now, we have

2L “ px1x2 ` ¨ ¨ ¨ ` xn´1xnq ` px1x2 ` ¨ ¨ ¨ ` xn´1xnq ě px2x3 ` ¨ ¨ ¨ ` xn´1xnq ` xkxk`1

ě x2x3 ` ¨ ¨ ¨ ` xn´1xn ` xnx1 ě ´1,

where the �rst inequality holds beause the only negative term in L is xkxk`1, the seond

inequality holds beause x1 ď xk ď 0 ď xk`1 ď xn, and the third inequality holds beause

the xi are assumed to be Shiny. We thus have that L ě ´1{2. We now hoose a suitable zi
suh that the de�nition of L mathes the leftover terms in (1).
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Relabel the xi with zi in the following manner: x2i´1 “ z´i, x2i “ zi (again taking indies

modulo n). We have that

L “
ÿ

i`j”0,´1 pmod nq
iıj pmod nq

zizj ,

as desired.

Solution 2. We present another proof that

ř
iăj xixj ě ´pn ´ 1q{2 for any Shiny n-tuple

px1, . . . , xnq. Assume an ordering of the xi as in (2), and let ℓ “ n ´ k. Assume without loss

of generality that k ě ℓ. Also assume k ‰ n, (as otherwise, all of the xi are nonpositive, and

so the inequality is trivial). De�ne the sets of indies S “ t1, 2, . . . , ku and T “ tk ` 1, . . . , nu.
De�ne the following sums:

K “
ÿ

iăj
i,jPS

xixj , M “
ÿ

iPS
jPT

xixj , and L “
ÿ

iăj
i,jPT

xixj

By de�nition, K,L ě 0 and M ď 0. We aim to show that K ` L ` M ě ´pn ´ 1q{2.
We split into ases based on whether k “ ℓ or k ą ℓ.

Case 1: k ą ℓ.

Consider all permutations φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu suh that φ´1pT q “ t2, 4, . . . , 2ℓu.
Note that there are k!ℓ! suh permutations φ. De�ne

fpφq “
n´1ÿ

i“1

xφpiqxφpi`1q.

We know that fpφq ě ´1 for every permutation φ with the above property. Averaging fpφq
over all φ gives

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ

kℓ
M ` 2pk ´ ℓ ´ 1q

kpk ´ 1q K,

where the equality holds beause there are kℓ produts inM , of whih 2ℓ are seleted for eah φ,

and there are kpk ´ 1q{2 produts in K, of whih k ´ ℓ ´ 1 are seleted for eah φ. We now

have

K ` L ` M ě K ` L `
ˆ

´k

2
´ k ´ ℓ ´ 1

k ´ 1
K

˙
“ ´k

2
` ℓ

k ´ 1
K ` L.

Sine k ď n ´ 1 and K,L ě 0, we get the desired inequality.

Case 2: k “ ℓ “ n{2.
We do a similar approah, onsidering all φ : t1, 2, . . . , nu Ñ t1, 2, . . . , nu suh that φ´1pT q “

t2, 4, . . . , 2ℓu, and de�ning f the same way. Analogously to Case 1, we have

´1 ď 1

k!ℓ!

ÿ

φ

fpφq “ 2ℓ ´ 1

kℓ
M,

beause there are kℓ produts in M , of whih 2ℓ´ 1 are seleted for eah φ. Now, we have that

K ` L ` M ě M ě ´ n2

4pn ´ 1q ě ´n ´ 1

2
,

where the last inequality holds beause n ě 4.
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A6.

Find all funtions f : R Ñ R suh that

fpfpxqfpyqq ` fpx ` yq “ fpxyq p˚q

for all x, y P R.
(Albania)

Answer: There are 3 solutions:

x ÞÑ 0 or x ÞÑ x ´ 1 or x ÞÑ 1 ´ x px P Rq.

Solution. An easy hek shows that all the 3 above mentioned funtions indeed satisfy the

original equation p˚q.
In order to show that these are the only solutions, �rst observe that if fpxq is a solution

then ´fpxq is also a solution. Hene, without loss of generality we may (and will) assume that

fp0q ď 0 from now on. We have to show that either f is identially zero or fpxq “ x ´ 1

(@x P R).

Observe that, for a �xed x ‰ 1, we may hoose y P R so that x ` y “ xy ðñ y “ x
x´1

,

and therefore from the original equation p˚q we have

f
´
fpxq ¨ f

´ x

x ´ 1

¯¯
“ 0 px ‰ 1q. (1)

In partiular, plugging in x “ 0 in (1), we onlude that f has at least one zero, namely pfp0qq2:

f
`
pfp0qq2

˘
“ 0. (2)

We analyze two ases (reall that fp0q ď 0):

Case 1: fp0q “ 0.

Setting y “ 0 in the original equation we get the identially zero solution:

fpfpxqfp0qq ` fpxq “ fp0q ùñ fpxq “ 0 for all x P R.

From now on, we work on the main

Case 2: fp0q ă 0.

We begin with the following

Claim 1.

fp1q “ 0, fpaq “ 0 ùñ a “ 1, and fp0q “ ´1. (3)

Proof. We need to show that 1 is the unique zero of f . First, observe that f has at least one

zero a by (2); if a ‰ 1 then setting x “ a in (1) we get fp0q “ 0, a ontradition. Hene

from (2) we get pfp0qq2 “ 1. Sine we are assuming fp0q ă 0, we onlude that fp0q “ ´1. l

Setting y “ 1 in the original equation p˚q we get

fpfpxqfp1qq`fpx`1q “ fpxq ðñ fp0q`fpx`1q “ fpxq ðñ fpx`1q “ fpxq`1 px P Rq.

An easy indution shows that

fpx ` nq “ fpxq ` n px P R, n P Zq. (4)



Shortlisted problems � solutions 25

Now we make the following

Claim 2. f is injetive.

Proof. Suppose that fpaq “ fpbq with a ‰ b. Then by (4), for all N P Z,

fpa ` N ` 1q “ fpb ` Nq ` 1.

Choose any integer N ă ´b; then there exist x0, y0 P R with x0 `y0 “ a`N `1, x0y0 “ b`N .

Sine a ‰ b, we have x0 ‰ 1 and y0 ‰ 1. Plugging in x0 and y0 in the original equation p˚q we
get

fpfpx0qfpy0qq ` fpa ` N ` 1q “ fpb ` Nq ðñ fpfpx0qfpy0qq ` 1 “ 0

ðñ fpfpx0qfpy0q ` 1q “ 0 by (4)

ðñ fpx0qfpy0q “ 0 by (3).

However, by Claim 1 we have fpx0q ‰ 0 and fpy0q ‰ 0 sine x0 ‰ 1 and y0 ‰ 1, a ontradition.

l

Now the end is near. For any t P R, plug in px, yq “ pt,´tq in the original equation p˚q to
get

fpfptqfp´tqq ` fp0q “ fp´t2q ðñ fpfptqfp´tqq “ fp´t2q ` 1 by (3)

ðñ fpfptqfp´tqq “ fp´t2 ` 1q by (4)

ðñ fptqfp´tq “ ´t2 ` 1 by injetivity of f.

Similarly, plugging in px, yq “ pt, 1 ´ tq in p˚q we get

fpfptqfp1 ´ tqq ` fp1q “ fptp1 ´ tqq ðñ fpfptqfp1 ´ tqq “ fptp1 ´ tqq by (3)

ðñ fptqfp1 ´ tq “ tp1 ´ tq by injetivity of f.

But sine fp1 ´ tq “ 1 ` fp´tq by (4), we get

fptqfp1 ´ tq “ tp1 ´ tq ðñ fptqp1 ` fp´tqq “ tp1 ´ tq ðñ fptq ` p´t2 ` 1q “ tp1 ´ tq
ðñ fptq “ t ´ 1,

as desired.

Comment. Other approahes are possible. For instane, after Claim 1, we may de�ne

gpxq def“ fpxq ` 1.

Replaing x ` 1 and y ` 1 in plae of x and y in the original equation p˚q, we get

fpfpx ` 1qfpy ` 1qq ` fpx ` y ` 2q “ fpxy ` x ` y ` 1q px, y P Rq,

and therefore, using (4) (so that in partiular gpxq “ fpx ` 1q), we may rewrite p˚q as

gpgpxqgpyqq ` gpx ` yq “ gpxy ` x ` yq px, y P Rq. p˚˚q

We are now to show that gpxq “ x for all x P R under the assumption (Claim 1) that 0 is the unique

zero of g.

Claim 3. Let n P Z and x P R. Then

(a) gpx ` nq “ x ` n, and the onditions gpxq “ n and x “ n are equivalent.

(b) gpnxq “ ngpxq.
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Proof. For part (a), just note that gpx`nq “ x`n is just a reformulation of (4). Then gpxq “ n ðñ
gpx ´ nq “ 0 ðñ x ´ n “ 0 sine 0 is the unique zero of g. For part (b), we may assume that x ‰ 0
sine the result is obvious when x “ 0. Plug in y “ n{x in p˚˚q and use part (a) to get

g
´
gpxqg

´n
x

¯¯
` g

´
x ` n

x

¯
“ g

´
n ` x ` n

x

¯
ðñ g

´
gpxqg

´n
x

¯¯
“ n ðñ gpxqg

´n
x

¯
“ n.

In other words, for x ‰ 0 we have

gpxq “ n

g
`
n{x

˘ .

In partiular, for n “ 1, we get gp1{xq “ 1{gpxq, and therefore replaing x Ð nx in the last equation

we �nally get

gpnxq “ n

g
`
1{x

˘ “ ngpxq,

as required.

Claim 4. The funtion g is additive, i.e., gpa ` bq “ gpaq ` gpbq for all a, b P R.

Proof. Set x Ð ´x and y Ð ´y in p˚˚q; sine g is an odd funtion (by Claim 3(b) with n “ ´1), we
get

gpgpxqgpyqq ´ gpx ` yq “ ´gp´xy ` x ` yq.
Subtrating the last relation from p˚˚q we have

2gpx ` yq “ gpxy ` x ` yq ` gp´xy ` x ` yq

and sine by Claim 3(b) we have 2gpx ` yq “ gp2px ` yqq, we may rewrite the last equation as

gpα ` βq “ gpαq ` gpβq where

#
α “ xy ` x ` y

β “ ´xy ` x ` y.

In other words, we have additivity for all α, β P R for whih there are real numbers x and y satisfying

x ` y “ α ` β

2
and xy “ α ´ β

2
,

i.e., for all α, β P R suh that pα`β
2

q2 ´4 ¨ α´β
2

ě 0. Therefore, given any a, b P R, we may hoose n P Z
large enough so that we have additivity for α “ na and β “ nb, i.e.,

gpnaq ` gpnbq “ gpna ` nbq ðñ ngpaq ` ngpbq “ ngpa ` bq

by Claim 3(b). Canelling n, we get the desired result. (Alternatively, setting either pα, βq “ pa, bq or
pα, βq “ p´a,´bq will ensure that pα`β

2
q2 ´ 4 ¨ α´β

2
ě 0). l

Now we may �nish the solution. Set y “ 1 in p˚˚q, and use Claim 3 to get

gpgpxqgp1qq ` gpx ` 1q “ gp2x ` 1q ðñ gpgpxqq ` gpxq ` 1 “ 2gpxq ` 1 ðñ gpgpxqq “ gpxq.

By additivity, this is equivalent to gpgpxq ´ xq “ 0. Sine 0 is the unique zero of g by assumption, we

�nally get gpxq ´ x “ 0 ðñ gpxq “ x for all x P R.
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A7.

Let a0, a1, a2, . . . be a sequene of integers and b0, b1, b2, . . . be a sequene of positive

integers suh that a0 “ 0, a1 “ 1, and

an`1 “
#
anbn ` an´1, if bn´1 “ 1

anbn ´ an´1, if bn´1 ą 1
for n “ 1, 2, . . ..

Prove that at least one of the two numbers a2017 and a2018 must be greater than or equal to 2017.

(Australia)

Solution 1. The value of b0 is irrelevant sine a0 “ 0, so we may assume that b0 “ 1.

Lemma. We have an ě 1 for all n ě 1.

Proof. Let us suppose otherwise in order to obtain a ontradition. Let

n ě 1 be the smallest integer with an ď 0. (1)

Note that n ě 2. It follows that an´1 ě 1 and an´2 ě 0. Thus we annot have an “
an´1bn´1 ` an´2, so we must have an “ an´1bn´1 ´ an´2. Sine an ď 0, we have an´1 ď an´2.

Thus we have an´2 ě an´1 ě an.

Let

r be the smallest index with ar ě ar`1 ě ar`2. (2)

Then r ď n´2 by the above, but also r ě 2: if b1 “ 1, then a2 “ a1 “ 1 and a3 “ a2b2`a1 ą a2;

if b1 ą 1, then a2 “ b1 ą 1 “ a1.

By the minimal hoie (2) of r, it follows that ar´1 ă ar. And sine 2 ď r ď n ´ 2, by the

minimal hoie (1) of n we have ar´1, ar, ar`1 ą 0. In order to have ar`1 ě ar`2, we must have

ar`2 “ ar`1br`1 ´ ar so that br ě 2. Putting everything together, we onlude that

ar`1 “ arbr ˘ ar´1 ě 2ar ´ ar´1 “ ar ` par ´ ar´1q ą ar,

whih ontradits (2). l

To omplete the problem, we prove that maxtan, an`1u ě n by indution. The ases n “ 0, 1

are given. Assume it is true for all non-negative integers stritly less than n, where n ě 2. There

are two ases:

Case 1: bn´1 “ 1.

Then an`1 “ anbn ` an´1. By the indutive assumption one of an´1, an is at least n´ 1 and

the other, by the lemma, is at least 1. Hene

an`1 “ anbn ` an´1 ě an ` an´1 ě pn ´ 1q ` 1 “ n.

Thus maxtan, an`1u ě n, as desired.

Case 2: bn´1 ą 1.

Sine we de�ned b0 “ 1 there is an index r with 1 ď r ď n ´ 1 suh that

bn´1, bn´2, . . . , br ě 2 and br´1 “ 1.

We have ar`1 “ arbr ` ar´1 ě 2ar ` ar´1. Thus ar`1 ´ ar ě ar ` ar´1.

Now we laim that ar ` ar´1 ě r. Indeed, this holds by inspetion for r “ 1; for r ě 2, one

of ar, ar´1 is at least r ´ 1 by the indutive assumption, while the other, by the lemma, is at

least 1. Hene ar ` ar´1 ě r, as laimed, and therefore ar`1 ´ ar ě r by the last inequality in

the previous paragraph.

Sine r ě 1 and, by the lemma, ar ě 1, from ar`1 ´ ar ě r we get the following two

inequalities:

ar`1 ě r ` 1 and ar`1 ą ar.
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Now observe that

am ą am´1 ùñ am`1 ą am for m “ r ` 1, r ` 2, . . . , n ´ 1,

sine am`1 “ ambm ´ am´1 ě 2am ´ am´1 “ am ` pam ´ am´1q ą am. Thus

an ą an´1 ą ¨ ¨ ¨ ą ar`1 ě r ` 1 ùñ an ě n.

So maxtan, an`1u ě n, as desired.

Solution 2. We say that an index n ą 1 is bad if bn´1 “ 1 and bn´2 ą 1; otherwise n is good.

The value of b0 is irrelevant to the de�nition of panq sine a0 “ 0; so we assume that b0 ą 1.

Lemma 1. (a) an ě 1 for all n ą 0.

(b) If n ą 1 is good, then an ą an´1.

Proof. Indution on n. In the base ases n “ 1, 2 we have a1 “ 1 ě 1, a2 “ b1a1 ě 1, and �nally

a2 ą a1 if 2 is good, sine in this ase b1 ą 1.

Now we assume that the lemma statement is proved for n “ 1, 2, . . . , k with k ě 2, and

prove it for n “ k ` 1. Reall that ak and ak´1 are positive by the indution hypothesis.

Case 1: k is bad.

We have bk´1 “ 1, so ak`1 “ bkak ` ak´1 ě ak ` ak´1 ą ak ě 1, as required.

Case 2: k is good.

We already have ak ą ak´1 ě 1 by the indution hypothesis. We onsider three easy

subases.

Subase 2.1: bk ą 1.

Then ak`1 ě bkak ´ ak´1 ě ak ` pak ´ ak´1q ą ak ě 1.

Subase 2.2: bk “ bk´1 “ 1.

Then ak`1 “ ak ` ak´1 ą ak ě 1.

Subase 2.3: bk “ 1 but bk´1 ą 1.

Then k ` 1 is bad, and we need to prove only (a), whih is trivial: ak`1 “ ak ´ ak´1 ě 1.

So, in all three subases we have veri�ed the required relations. l

Lemma 2. Assume that n ą 1 is bad. Then there exists a j P t1, 2, 3u suh that an`j ě
an´1 ` j ` 1, and an`i ě an´1 ` i for all 1 ď i ă j.

Proof. Reall that bn´1 “ 1. Set

m “ infti ą 0: bn`i´1 ą 1u

(possibly m “ `8). We laim that j “ mintm, 3u works. Again, we distinguish several ases,

aording to the value of m; in eah of them we use Lemma 1 without referene.

Case 1: m “ 1, so bn ą 1.

Then an`1 ě 2an ` an´1 ě an´1 ` 2, as required.

Case 2: m “ 2, so bn “ 1 and bn`1 ą 1.

Then we suessively get

an`1 “ an ` an´1 ě an´1 ` 1,

an`2 ě 2an`1 ` an ě 2pan´1 ` 1q ` an “ an´1 ` pan´1 ` an ` 2q ě an´1 ` 4,

whih is even better than we need.
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Case 3: m ą 2, so bn “ bn`1 “ 1.

Then we suessively get

an`1 “ an ` an´1 ě an´1 ` 1, an`2 “ an`1 ` an ě an´1 ` 1 ` an ě an´1 ` 2,

an`3 ě an`2 ` an`1 ě pan´1 ` 1q ` pan´1 ` 2q ě an´1 ` 4,

as required. l

Lemmas 1(b) and 2 provide enough information to prove that maxtan, an`1u ě n for all n

and, moreover, that an ě n often enough. Indeed, assume that we have found some n with

an´1 ě n´1. If n is good, then by Lemma 1(b) we have an ě n as well. If n is bad, then Lemma 2

yields maxtan`i, an`i`1u ě an´1 ` i`1 ě n` i for all 0 ď i ă j and an`j ě an´1 ` j`1 ě n` j;

so n ` j is the next index to start with.



30 IMO 2017, Rio de Janeiro

A8.

Assume that a funtion f : R Ñ R satis�es the following ondition:

For every x, y P R suh that

`
fpxq `y

˘`
fpyq `x

˘
ą 0, we have fpxq `y “ fpyq `x.

Prove that fpxq ` y ď fpyq ` x whenever x ą y.

(Netherlands)

Solution 1. De�ne gpxq “ x ´ fpxq. The ondition on f then rewrites as follows:

For every x, y P R suh that

`
px ` yq ´ gpxq

˘`
px ` yq ´ gpyq

˘
ą 0, we have gpxq “ gpyq.

This ondition may in turn be rewritten in the following form:

If gpxq ‰ gpyq, then the number x ` y lies (non-stritly) between gpxq and gpyq. p˚q
Notie here that the funtion g1pxq “ ´gp´xq also satis�es p˚q, sine

g1pxq ‰ g1pyq ùñ gp´xq ‰ gp´yq ùñ ´px ` yq lies between gp´xq and gp´yq
ùñ x ` y lies between g1pxq and g1pyq.

On the other hand, the relation we need to prove reads now as

gpxq ď gpyq whenever x ă y. (1)

Again, this ondition is equivalent to the same one with g replaed by g1.

If gpxq “ 2x for all x P R, then p˚q is obvious; so in what follows we onsider the other

ase. We split the solution into a sequene of lemmas, strengthening one another. We always

onsider some value of x with gpxq ‰ 2x and denote X “ gpxq.
Lemma 1. Assume that X ă 2x. Then on the interval pX ´ x; xs the funtion g attains at

most two values � namely, X and, possibly, some Y ą X . Similarly, if X ą 2x, then g attains

at most two values on rx;X ´ xq � namely, X and, possibly, some Y ă X .

Proof. We start with the �rst laim of the lemma. Notie that X ´ x ă x, so the onsidered

interval is nonempty.

Take any a P pX ´ x; xq with gpaq ‰ X (if it exists). If gpaq ă X , then p˚q yields gpaq ď
a ` x ď gpxq “ X , so a ď X ´ x whih is impossible. Thus, gpaq ą X and hene by p˚q we get
X ď a ` x ď gpaq.

Now, for any b P pX ´ x; xq with gpbq ‰ X we similarly get b ` x ď gpbq. Therefore, the

number a` b (whih is smaller than eah of a ` x and b` x) annot lie between gpaq and gpbq,
whih by p˚q implies that gpaq “ gpbq. Hene g may attain only two values on pX ´ x; xs,
namely X and gpaq ą X .

To prove the seond laim, notie that g1p´xq “ ´X ă 2 ¨ p´xq, so g1 attains at most two

values on p´X ` x,´xs, i.e., ´X and, possibly, some ´Y ą ´X. Passing bak to g, we get

what we need. l

Lemma 2. If X ă 2x, then g is onstant on pX ´x; xq. Similarly, if X ą 2x, then g is onstant

on px;X ´ xq.
Proof. Again, it su�es to prove the �rst laim only. Assume, for the sake of ontradition,

that there exist a, b P pX ´ x; xq with gpaq ‰ gpbq; by Lemma 1, we may assume that gpaq “ X

and Y “ gpbq ą X .

Notie that mintX ´ a,X ´ bu ą X ´ x, so there exists a u P pX ´ x; xq suh that

u ă mintX ´ a,X ´ bu. By Lemma 1, we have either gpuq “ X or gpuq “ Y . In the former

ase, by p˚q we have X ď u ` b ď Y whih ontradits u ă X ´ b. In the seond ase, by p˚q
we have X ď u ` a ď Y whih ontradits u ă X ´ a. Thus the lemma is proved. l
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Lemma 3. If X ă 2x, then gpaq “ X for all a P pX´x; xq. Similarly, if X ą 2x, then gpaq “ X

for all a P px;X ´ xq.
Proof. Again, we only prove the �rst laim.

By Lemmas 1 and 2, this laim may be violated only if g takes on a onstant value Y ą X

on pX ´ x, xq. Choose any a, b P pX ´ x; xq with a ă b. By p˚q, we have

Y ě b ` x ě X. (2)

In partiular, we have Y ě b` x ą 2a. Applying Lemma 2 to a in plae of x, we obtain that g

is onstant on pa, Y ´ aq. By (2) again, we have x ď Y ´ b ă Y ´ a; so x, b P pa; Y ´ aq. But
X “ gpxq ‰ gpbq “ Y , whih is a ontradition. l

Now we are able to �nish the solution. Assume that gpxq ą gpyq for some x ă y. Denote

X “ gpxq and Y “ gpyq; by p˚q, we have X ě x ` y ě Y , so Y ´ y ď x ă y ď X ´ x,

and hene pY ´ y; yq X px;X ´ xq “ px, yq ‰ ∅. On the other hand, sine Y ´ y ă y and

x ă X´x, Lemma 3 shows that g should attain a onstant value X on px;X´xq and a onstant
value Y ‰ X on pY ´ y; yq. Sine these intervals overlap, we get the �nal ontradition.

Solution 2. As in the previous solution, we pass to the funtion g satisfying p˚q and notie

that we need to prove the ondition (1). We will also make use of the funtion g1.

If g is onstant, then (1) is learly satis�ed. So, in the sequel we assume that g takes on at

least two di�erent values. Now we ollet some information about the funtion g.

Claim 1. For any c P R, all the solutions of gpxq “ c are bounded.

Proof. Fix any y P R with gpyq ‰ c. Assume �rst that gpyq ą c. Now, for any x with gpxq “ c,

by p˚q we have c ď x ` y ď gpyq, or c ´ y ď x ď gpyq ´ y. Sine c and y are onstant, we get

what we need.

If gpyq ă c, we may swith to the funtion g1 for whih we have g1p´yq ą ´c. By the above

arguments, we obtain that all the solutions of g1p´xq “ ´c are bounded, whih is equivalent

to what we need. l

As an immediate onsequene, the funtion g takes on in�nitely many values, whih shows

that the next laim is indeed widely appliable.

Claim 2. If gpxq ă gpyq ă gpzq, then x ă z.

Proof. By p˚q, we have gpxq ď x ` y ď gpyq ď z ` y ď gpzq, so x ` y ď z ` y, as required. l

Claim 3. Assume that gpxq ą gpyq for some x ă y. Then gpaq P tgpxq, gpyqu for all a P rx; ys.
Proof. If gpyq ă gpaq ă gpxq, then the triple py, a, xq violates Claim 2. If gpaq ă gpyq ă gpxq,
then the triple pa, y, xq violates Claim 2. If gpyq ă gpxq ă gpaq, then the triple py, x, aq violates
Claim 2. The only possible ases left are gpaq P tgpxq, gpyqu. l

In view of Claim 3, we say that an interval I (whih may be open, losed, or semi-open) is

a Dirihlet interval

∗
if the funtion g takes on just two values on I.

Assume now, for the sake of ontradition, that (1) is violated by some x ă y. By Claim 3,

rx; ys is a Dirihlet interval. Set

r “ infta : pa; ys is a Dirihlet intervalu and s “ suptb : rx; bq is a Dirihlet intervalu.

Clearly, r ď x ă y ď s. By Claim 1, r and s are �nite. Denote X “ gpxq, Y “ gpyq, and
∆ “ py ´ xq{2.

Suppose �rst that there exists a t P pr; r ` ∆q with fptq “ Y . By the de�nition of r, the

interval pr ´ ∆; ys is not Dirihlet, so there exists an r1 P pr ´ ∆; rs suh that gpr1q R tX, Y u.
∗
The name Dirihlet interval is hosen for the reason that g theoretially might at similarly to the Dirihlet

funtion on this interval.
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The funtion g attains at least three distint values on rr1; ys, namely gpr1q, gpxq, and gpyq.
Claim 3 now yields gpr1q ď gpyq; the equality is impossible by the hoie of r1

, so in fat

gpr1q ă Y . Applying p˚q to the pairs pr1, yq and pt, xq we obtain r1 ` y ď Y ď t ` x, whene

r ´ ∆ ` y ă r1 ` y ď t ` x ă r ` ∆ ` x, or y ´ x ă 2∆. This is a ontradition.

Thus, gptq “ X for all t P pr; r ` ∆q. Applying the same argument to g1, we get gptq “ Y

for all t P ps ´ ∆; sq.
Finally, hoose some s1, s2 P ps ´ ∆; sq with s1 ă s2 and denote δ “ ps2 ´ s1q{2. As before,

we hoose r1 P pr ´ δ; rq with gpr1q R tX, Y u and obtain gpr1q ă Y . Choose any t P pr; r` δq; by
the above arguments, we have gptq “ X and gps1q “ gps2q “ Y . As before, we apply p˚q to the

pairs pr1, s2q and pt, s1q obtaining r ´ δ ` s2 ă r1 ` s2 ď Y ď t` s1 ă r ` δ ` s1, or s2 ´ s1 ă 2δ.

This is a �nal ontradition.

Comment 1. The original submission disussed the same funtions f , but the question was di�er-

ent � namely, the following one:

Prove that the equation fpxq “ 2017x has at most one solution, and the equation fpxq “ ´2017x
has at least one solution.

The Problem Seletion Committee deided that the question we are proposing is more natural,

sine it provides more natural information about the funtion g (whih is indeed the main harater

in this story). On the other hand, the new problem statement is strong enough in order to imply the

original one easily.

Namely, we will dedue from the new problem statement (along with the fats used in the solutions)

that piq for every N ą 0 the equation gpxq “ ´Nx has at most one solution, and piiq for every N ą 1
the equation gpxq “ Nx has at least one solution.

Claim piq is now trivial. Indeed, g is proven to be non-dereasing, so gpxq`Nx is stritly inreasing

and thus has at most one zero.

We proeed on laim piiq. If gp0q “ 0, then the required root has been already found. Otherwise,

we may assume that gp0q ą 0 and denote c “ gp0q. We intend to prove that x “ c{N is the required

root. Indeed, by monotoniity we have gpc{Nq ě gp0q “ c; if we had gpc{Nq ą c, then p˚q would yield

c ď 0 ` c{N ď gpc{Nq whih is false. Thus, gpxq “ c “ Nx.

Comment 2. There are plenty of funtions g satisfying p˚q (and hene of funtions f satisfying

the problem onditions). One simple example is g0pxq “ 2x. Next, for any inreasing sequene

A “ p. . . , a´1, a0, a1, . . . q whih is unbounded in both diretions (i.e., for every N this sequene ontains

terms greater than N , as well as terms smaller than ´N), the funtion gA de�ned by

gApxq “ ai ` ai`1 whenever x P rai; ai`1q

satis�es p˚q. Indeed, pik any x ă y with gpxq ‰ gpyq; this means that x P rai; ai`1q and y P raj ; aj`1q
for some i ă j. Then we have gpxq “ ai ` ai`1 ď x ` y ă aj ` aj`1 “ gpyq, as required.

There also exist examples of the mixed behavior; e.g., for an arbitrary sequene A as above and an

arbitrary subset I Ď Z the funtion

gA,Ipxq “
#
g0pxq, x P rai; ai`1q with i P I;

gApxq, x P rai; ai`1q with i R I

also satis�es p˚q.
Finally, it is even possible to provide a omplete desription of all funtions g satisfying p˚q (and

hene of all funtions f satisfying the problem onditions); however, it seems to be far out of sope for

the IMO. This desription looks as follows.

Let A be any losed subset of R whih is unbounded in both diretions. De�ne the funtions iA,

sA, and gA as follows:

iApxq “ infta P A : a ě xu, sApxq “ supta P A : a ď xu, gApxq “ iApxq ` sApxq.
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It is easy to see that for di�erent sets A and B the funtions gA and gB are also di�erent (sine, e.g.,

for any a P A zB the funtion gB is onstant in a small neighborhood of a, but the funtion gA is not).

One may hek, similarly to the arguments above, that eah suh funtion satis�es p˚q.
Finally, one more modi�ation is possible. Namely, for any x P A one may rede�ne gApxq (whih

is 2x) to be any of the numbers

gA`pxq “ iA`pxq ` x or gA´pxq “ x ` sA´pxq,
where iA`pxq “ infta P A : a ą xu and sA´pxq “ supta P A : a ă xu.

This really hanges the value if x has some right (respetively, left) semi-neighborhood disjoint from A,

so there are at most ountably many possible hanges; all of them an be performed independently.

With some e�ort, one may show that the onstrution above provides all funtions g satisfying p˚q.
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Combinatoris

C1.

A retangleR with odd integer side lengths is divided into small retangles with integer

side lengths. Prove that there is at least one among the small retangles whose distanes from

the four sides of R are either all odd or all even.

(Singapore)

Solution. Let the width and height of R be odd numbers a and b. Divide R into ab unit

squares and olor them green and yellow in a hekered pattern. Sine the side lengths of a

and b are odd, the orner squares of R will all have the same olor, say green.

Call a retangle (either R or a small retangle) green if its orners are all green; all it

yellow if the orners are all yellow, and all it mixed if it has both green and yellow orners. In

partiular, R is a green retangle.

We will use the following trivial observations.

‚ Every mixed retangle ontains the same number of green and yellow squares;

‚ Every green retangle ontains one more green square than yellow square;

‚ Every yellow retangle ontains one more yellow square than green square.

The retangle R is green, so it ontains more green unit squares than yellow unit squares.

Therefore, among the small retangles, at least one is green. Let S be suh a small green

retangle, and let its distanes from the sides of R be x, y, u and v, as shown in the piture.

The top-left orner of R and the top-left orner of S have the same olor, whih happen if and

only if x and u have the same parity. Similarly, the other three green orners of S indiate that

x and v have the same parity, y and u have the same parity, i.e. x, y, u and v are all odd or all

even.

u v

R

S

y

x
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C2.

Let n be a positive integer. De�ne a hameleon to be any sequene of 3n letters, with

exatly n ourrenes of eah of the letters a, b, and c. De�ne a swap to be the transposition of

two adjaent letters in a hameleon. Prove that for any hameleonX , there exists a hameleon Y

suh that X annot be hanged to Y using fewer than 3n2{2 swaps.

(Australia)

Solution 1. To start, notie that the swap of two idential letters does not hange a hameleon,

so we may assume there are no suh swaps.

For any two hameleons X and Y , de�ne their distane dpX, Y q to be the minimal number

of swaps needed to transform X into Y (or vie versa). Clearly, dpX, Y q ` dpY, Zq ě dpX,Zq
for any three hameleons X , Y , and Z.

Lemma. Consider two hameleons

P “ aa . . . aloomoon
n

bb . . . bloomoon
n

cc . . . cloomoon
n

and Q “ cc . . . cloomoon
n

bb . . . bloomoon
n

aa . . . aloomoon
n

.

Then dpP,Qq ě 3n2
.

Proof. For any hameleon X and any pair of distint letters u, v P ta, b, cu, we de�ne fu,vpXq
to be the number of pairs of positions in X suh that the left one is oupied by u, and

the right one is oupied by v. De�ne fpXq “ fa,bpXq ` fa,cpXq ` fb,cpXq. Notie that

fa,bpP q “ fa,cpP q “ fb,cpP q “ n2
and fa,bpQq “ fa,cpQq “ fb,cpQq “ 0, so fpP q “ 3n2

and

fpQq “ 0.

Now onsider some swap hanging a hameleonX toX 1
; say, the letters a and b are swapped.

Then fa,bpXq and fa,bpX 1q di�er by exatly 1, while fa,cpXq “ fa,cpX 1q and fb,cpXq “ fb,cpX 1q.
This yields |fpXq ´fpX 1q| “ 1, i.e., on any swap the value of f hanges by 1. Hene dpX, Y q ě
|fpXq ´ fpY q| for any two hameleons X and Y . In partiular, dpP,Qq ě |fpP q ´ fpQq| “ 3n2

,

as desired. l

Bak to the problem, take any hameleon X and notie that dpX,P q`dpX,Qq ě dpP,Qq ě
3n2

by the lemma. Consequently, maxtdpX,P q, dpX,Qqu ě 3n2

2
, whih establishes the problem

statement.

Comment 1. The problem may be reformulated in a graph language. Construt a graph G with the

hameleons as verties, two verties being onneted with an edge if and only if these hameleons di�er

by a single swap. Then dpX,Y q is the usual distane between the verties X and Y in this graph.

Reall that the radius of a onneted graph G is de�ned as

rpGq “ min
vPV

max
uPV

dpu, vq.

So we need to prove that the radius of the onstruted graph is at least 3n2{2.
It is well-known that the radius of any onneted graph is at least the half of its diameter (whih

is simply maxu,vPV dpu, vq). Exatly this fat has been used above in order to �nish the solution.

Solution 2. We use the notion of distane from Solution 1, but provide a di�erent lower

bound for it.

In any hameleon X , we enumerate the positions in it from left to right by 1, 2, . . . , 3n.

De�ne scpXq as the sum of positions oupied by c. The value of sc hanges by at most 1 on

eah swap, but this fat alone does not su�e to solve the problem; so we need an improvement.

For every hameleon X , denote by Xc the sequene obtained from X by removing all n

letters c. Enumerate the positions in Xc from left to right by 1, 2, . . . , 2n, and de�ne sc,bpXq
as the sum of positions in Xc oupied by b. (In other words, here we onsider the positions of

the b's relatively to the a's only.) Finally, denote

d1pX, Y q :“ |scpXq ´ scpY q| ` |sc,bpXq ´ sc,bpY q|.
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Now onsider any swap hanging a hameleon X to X 1
. If no letter c is involved into this

swap, then scpXq “ scpX 1q; on the other hand, exatly one letter b hanges its position in Xc, so

|sc,bpXq ´sc,bpX 1q| “ 1. If a letter c is involved into a swap, then Xc “ X 1
c, so sc,bpXq “ sc,bpX 1q

and |scpXq ´ scpX 1q| “ 1. Thus, in all ases we have d1pX,X 1q “ 1.

As in the previous solution, this means that dpX, Y q ě d1pX, Y q for any two hameleons X

and Y . Now, for any hameleon X we will indiate a hameleon Y with d1pX, Y q ě 3n2{2, thus
�nishing the solution.

The funtion sc attains all integer values from 1 ` ¨ ¨ ¨ ` n “ npn`1q
2

to p2n ` 1q ` ¨ ¨ ¨ ` 3n “
2n2 ` npn`1q

2
. If scpXq ď n2 ` npn`1q

2
, then we put the letter c into the last n positions in Y ;

otherwise we put the letter c into the �rst n positions in Y . In either ase we already have

|scpXq ´ scpY q| ě n2
.

Similarly, sc,b ranges from
npn`1q

2
to n2 ` npn`1q

2
. So, if sc,bpXq ď n2

2
` npn`1q

2
, then we put

the letter b into the last n positions in Y whih are still free; otherwise, we put the letter b into

the �rst n suh positions. The remaining positions are oupied by a. In any ase, we have

|sc,bpXq ´ sc,bpY q| ě n2

2
, thus d1pX, Y q ě n2 ` n2

2
“ 3n2

2
, as desired.

Comment 2. The two solutions above used two lower bounds |fpXq ´ fpY q| and d1pX,Y q for the

number dpX,Y q. One may see that these bounds are losely related to eah other, as

fa,cpXq ` fb,cpXq “ scpXq ´ npn ` 1q
2

and fa,bpXq “ sc,bpXq ´ npn ` 1q
2

.

One an see that, e.g., the bound d1pX,Y q ould as well be used in the proof of the lemma in Solution 1.

Let us desribe here an even sharper bound whih also an be used in di�erent versions of the

solutions above.

In eah hameleon X, enumerate the ourrenes of a from the left to the right as a1, a2, . . . , an.

Sine we got rid of swaps of idential letters, the relative order of these letters remains the same during

the swaps. Perform the same operation with the other letters, obtaining new letters b1, . . . , bn and

c1, . . . , cn. Denote by A the set of the 3n obtained letters.

Sine all 3n letters beame di�erent, for any hameleon X and any s P A we may de�ne the

position NspXq of s in X (thus 1 ď NspXq ď 3n). Now, for any two hameleons X and Y we say that

a pair of letters ps, tq P AˆA is an pX,Y q-inversion if NspXq ă NtpXq but NspY q ą NtpY q, and de�ne

d˚pX,Y q to be the number of pX,Y q-inversions. Then for any two hameleons Y and Y 1
di�ering by a

single swap, we have |d˚pX,Y q ´ d˚pX,Y 1q| “ 1. Sine d˚pX,Xq “ 0, this yields dpX,Y q ě d˚pX,Y q
for any pair of hameleons X and Y . The bound d˚

may also be used in both Solution 1 and Solution 2.

Comment 3. In fat, one may prove that the distane d˚
de�ned in the previous omment oinides

with d. Indeed, if X ‰ Y , then there exist an pX,Y q-inversion ps, tq. One an show that suh s and t

may be hosen to oupy onseutive positions in Y . Clearly, s and t orrespond to di�erent letters

among ta, b, cu. So, swapping them in Y we get another hameleon Y 1
with d˚pX,Y 1q “ d˚pX,Y q ´ 1.

Proeeding in this manner, we may hange Y to X in d˚pX,Y q steps.
Using this fat, one an show that the estimate in the problem statement is sharp for all n ě 2.

(For n “ 1 it is not sharp, sine any permutation of three letters an be hanged to an opposite one in

no less than three swaps.) We outline the proof below.

For any k ě 0, de�ne

X2k “ abc abc . . . abclooooooomooooooon
3k letters

cba cba . . . cbalooooooomooooooon
3k letters

and X2k`3 “ abc abc . . . abclooooooomooooooon
3k letters

abc bca cab cba cba . . . cbalooooooomooooooon
3k letters

.

We laim that for every n ě 2 and every hameleon Y , we have d˚pXn, Y q ď
P
3n2{2

T
. This will mean

that for every n ě 2 the number 3n2{2 in the problem statement annot be hanged by any number

larger than

P
3n2{2

T
.

For any distint letters u, v P ta, b, cu and any two hameleons X and Y , we de�ne d˚
u,vpX,Y q as

the number of pX,Y q-inversions ps, tq suh that s and t are instanes of u and v (in any of the two

possible orders). Then d˚pX,Y q “ d˚
a,bpX,Y q ` d˚

b,cpX,Y q ` d˚
c,apX,Y q.
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We start with the ase when n “ 2k is even; denote X “ X2k. We show that d˚
a,bpX,Y q ď 2k2

for any hameleon Y ; this yields the required estimate. Proeed by the indution on k with the trivial

base ase k “ 0. To perform the indution step, notie that d˚
a,bpX,Y q is indeed the minimal number of

swaps needed to hange Yc into Xc. One may show that moving a1 and a2k in Y onto the �rst and the

last positions in Y , respetively, takes at most 2k swaps, and that subsequent moving b1 and b2k onto

the seond and the seond last positions takes at most 2k ´ 2 swaps. After performing that, one may

delete these letters from both Xc and Yc and apply the indution hypothesis; so Xc an be obtained

from Yc using at most 2pk ´ 1q2 ` 2k ` p2k ´ 2q “ 2k2 swaps, as required.

If n “ 2k ` 3 is odd, the proof is similar but more tehnially involved. Namely, we laim that

d˚
a,bpX2k`3, Y q ď 2k2 ` 6k ` 5 for any hameleon Y , and that the equality is ahieved only if Yc “

bb . . . b aa . . . a. The proof proeeds by a similar indution, with some are taken of the base ase, as

well as of extrating the equality ase. Similar estimates hold for d˚
b,c and d˚

c,a. Summing three suh

estimates, we obtain

d˚pX2k`3, Y q ď 3p2k2 ` 6k ` 5q “
R
3n2

2

V
` 1,

whih is by 1 more than we need. But the equality ould be ahieved only if Yc “ bb . . . b aa . . . a

and, similarly, Yb “ aa . . . a cc . . . c and Ya “ cc . . . c bb . . . b. Sine these three equalities annot hold

simultaneously, the proof is �nished.
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C3.

Sir Alex plays the following game on a row of 9 ells. Initially, all ells are empty. In

eah move, Sir Alex is allowed to perform exatly one of the following two operations:

(1) Choose any number of the form 2j, where j is a non-negative integer, and put it into an

empty ell.

(2) Choose two (not neessarily adjaent) ells with the same number in them; denote that

number by 2j. Replae the number in one of the ells with 2j`1
and erase the number in

the other ell.

At the end of the game, one ell ontains the number 2n, where n is a given positive integer,

while the other ells are empty. Determine the maximum number of moves that Sir Alex ould

have made, in terms of n.

(Thailand)

Answer: 2
ř

8

j“0

`
n

j

˘
´ 1.

Solution 1. We will solve a more general problem, replaing the row of 9 ells with a row of k

ells, where k is a positive integer. Denote by mpn, kq the maximum possible number of moves

Sir Alex an make starting with a row of k empty ells, and ending with one ell ontaining

the number 2n and all the other k ´ 1 ells empty. Call an operation of type (1) an insertion,

and an operation of type (2) a merge.

Only one move is possible when k “ 1, so we have mpn, 1q “ 1. From now on we onsider

k ě 2, and we may assume Sir Alex's last move was a merge. Then, just before the last move,

there were exatly two ells with the number 2n´1
, and the other k ´ 2 ells were empty.

Paint one of those numbers 2n´1
blue, and the other one red. Now trae bak Sir Alex's

moves, always painting the numbers blue or red following this rule: if a and b merge into c,

paint a and b with the same olor as c. Notie that in this bakward proess new numbers are

produed only by reversing merges, sine reversing an insertion simply means deleting one of

the numbers. Therefore, all numbers appearing in the whole proess will reeive one of the two

olors.

Sir Alex's �rst move is an insertion. Without loss of generality, assume this �rst number

inserted is blue. Then, from this point on, until the last move, there is always at least one ell

with a blue number.

Besides the last move, there is no move involving a blue and a red number, sine all merges

involves numbers with the same olor, and insertions involve only one number. Call an insertion

of a blue number or merge of two blue numbers a blue move, and de�ne a red move analogously.

The whole sequene of blue moves ould be repeated on another row of k ells to produe

one ell with the number 2n´1
and all the others empty, so there are at most mpn ´ 1, kq blue

moves.

Now we look at the red moves. Sine every time we perform a red move there is at least

one ell oupied with a blue number, the whole sequene of red moves ould be repeated on a

row of k ´ 1 ells to produe one ell with the number 2n´1
and all the others empty, so there

are at most mpn ´ 1, k ´ 1q red moves. This proves that

mpn, kq ď mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.

On the other hand, we an start with an empty row of k ells and perform mpn ´ 1, kq
moves to produe one ell with the number 2n´1

and all the others empty, and after that

perform mpn ´ 1, k ´ 1q moves on those k ´ 1 empty ells to produe the number 2n´1
in one

of them, leaving k ´ 2 empty. With one more merge we get one ell with 2n and the others

empty, proving that

mpn, kq ě mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1.
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It follows that

mpn, kq “ mpn ´ 1, kq ` mpn ´ 1, k ´ 1q ` 1, (1)

for n ě 1 and k ě 2.

If k “ 1 or n “ 0, we must insert 2n on our �rst move and immediately get the �nal

on�guration, so mp0, kq “ 1 and mpn, 1q “ 1, for n ě 0 and k ě 1. These initial values,

together with the reurrene relation (1), determine mpn, kq uniquely.
Finally, we show that

mpn, kq “ 2

k´1ÿ

j“0

ˆ
n

j

˙
´ 1, (2)

for all integers n ě 0 and k ě 1.

We use indution on n. Sine mp0, kq “ 1 for k ě 1, (2) is true for the base ase. We make

the indution hypothesis that (2) is true for some �xed positive integer n and all k ě 1. We

have mpn ` 1, 1q “ 1 “ 2
`
n`1

0

˘
´ 1, and for k ě 2 the reurrene relation (1) and the indution

hypothesis give us

mpn ` 1, kq “ mpn, kq ` mpn, k ´ 1q ` 1 “ 2

k´1ÿ

j“0

ˆ
n

j

˙
´ 1 ` 2

k´2ÿ

j“0

ˆ
n

j

˙
´ 1 ` 1

“ 2

k´1ÿ

j“0

ˆ
n

j

˙
` 2

k´1ÿ

j“0

ˆ
n

j ´ 1

˙
´ 1 “ 2

k´1ÿ

j“0

ˆˆ
n

j

˙
`
ˆ

n

j ´ 1

˙˙
´ 1 “ 2

k´1ÿ

j“0

ˆ
n ` 1

j

˙
´ 1,

whih ompletes the proof.

Comment 1. After deduing the reurrene relation (1), it may be onvenient to homogenize the

reurrene relation by de�ning hpn, kq “ mpn, kq ` 1. We get the new relation

hpn, kq “ hpn ´ 1, kq ` hpn ´ 1, kq, (3)

for n ě 1 and k ě 2, with initial values hp0, kq “ hpn, 1q “ 2, for n ě 0 and k ě 1.
This may help one to guess the answer, and also with other approahes like the one we develop

next.

Comment 2. We an use a generating funtion to �nd the answer without guessing. We work with

the homogenized reurrene relation (3). De�ne hpn, 0q “ 0 so that (3) is valid for k “ 1 as well. Now

we set up the generating funtion fpx, yq “
ř

n,kě0
hpn, kqxnyk. Multiplying the reurrene relation (3)

by xnyk and summing over n, k ě 1, we get

ÿ

n,kě1

hpn, kqxnyk “ x
ÿ

n,kě1

hpn ´ 1, kqxn´1yk ` xy
ÿ

n,kě1

hpn ´ 1, k ´ 1qxn´1yk´1.

Completing the missing terms leads to the following equation on fpx, yq:

fpx, yq ´
ÿ

ně0

hpn, 0qxn ´
ÿ

kě1

hp0, kqyk “ xfpx, yq ´ x
ÿ

ně0

hpn, 0qxn ` xyfpx, yq.

Substituting the initial values, we obtain

fpx, yq “ 2y

1 ´ y
¨ 1

1 ´ xp1 ` yq .

Developing as a power series, we get

fpx, yq “ 2
ÿ

jě1

yj ¨
ÿ

ně0

p1 ` yqnxn.
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The oe�ient of xn in this power series is

2
ÿ

jě1

yj ¨ p1 ` yqn “ 2
ÿ

jě1

yj ¨
ÿ

iě0

ˆ
n

i

˙
yi,

and extrating the oe�ient of yk in this last expression we �nally obtain the value for hpn, kq,

hpn, kq “ 2
k´1ÿ

j“0

ˆ
n

j

˙
.

This proves that

mpn, kq “ 2
k´1ÿ

j“0

ˆ
n

j

˙
´ 1.

The generating funtion approah also works if applied to the non-homogeneous reurrene rela-

tion (1), but the omputations are less straightforward.

Solution 2. De�ne merges and insertions as in Solution 1. After eah move made by Sir Alex

we ompute the number N of empty ells, and the sum S of all the numbers written in the

ells. Insertions always inrease S by some power of 2, and inrease N exatly by 1. Merges do

not hange S and derease N exatly by 1. Sine the initial value of N is 0 and its �nal value

is 1, the total number of insertions exeeds that of merges by exatly one. So, to maximize the

number of moves, we need to maximize the number of insertions.

We will need the following lemma.

Lemma. If the binary representation of a positive integer A has d nonzero digits, then A annot

be represented as a sum of fewer than d powers of 2. Moreover, any representation of A as a

sum of d powers of 2 must oinide with its binary representation.

Proof. Let s be the minimum number of summands in all possible representations of A as sum

of powers of 2. Suppose there is suh a representation with s summands, where two of the

summands are equal to eah other. Then, replaing those two summands with the result of

their sum, we obtain a representation with fewer than s summands, whih is a ontradition.

We dedue that in any representation with s summands, the summands are all distint, so any

suh representation must oinide with the unique binary representation of A, and s “ d. l

Now we split the solution into a sequene of laims.

Claim 1. After every move, the number S is the sum of at most k ´ 1 distint powers of 2.

Proof. If S is the sum of k (or more) distint powers of 2, the Lemma implies that the k ells

are �lled with these numbers. This is a ontradition sine no more merges or insertions an

be made. l

Let Apn, k ´ 1q denote the set of all positive integers not exeeding 2n with at most k ´ 1

nonzero digits in its base 2 representation. Sine every insertion inreases the value of S, by

Claim 1, the total number of insertions is at most |Apn, k ´ 1q|. We proeed to prove that it is

possible to ahieve this number of insertions.

Claim 2. Let Apn, k´1q “ ta1, a2, . . . , amu, with a1 ă a2 ă ¨ ¨ ¨ ă am. If after some of Sir Alex's

moves the value of S is aj , with j P t1, 2, . . . , m ´ 1u, then there is a sequene of moves after

whih the value of S is exatly aj`1.

Proof. Suppose S “ aj . Performing all possible merges, we eventually get di�erent powers of 2

in all nonempty ells. After that, by Claim 1 there will be at least one empty ell, in whih we

want to insert aj`1 ´ aj. It remains to show that aj`1 ´ aj is a power of 2.

For this purpose, we notie that if aj has less than k ´ 1 nonzero digits in base 2 then

aj`1 “ aj ` 1. Otherwise, we have aj “ 2bk´1 ` ¨ ¨ ¨ ` 2b2 ` 2b1 with b1 ă b2 ă ¨ ¨ ¨ ă bk´1. Then,

adding any number less than 2b1 to aj will result in a number with more than k ´ 1 nonzero
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binary digits. On the other hand, aj ` 2b1 is a sum of k powers of 2, not all distint, so by the

Lemma it will be a sum of less then k distint powers of 2. This means that aj`1 ´ aj “ 2b1 ,

ompleting the proof. l

Claims 1 and 2 prove that the maximum number of insertions is |Apn, k ´ 1q|. We now

ompute this number.

Claim 3. |Apn, k ´ 1q| “ řk´1

j“0

`
n

j

˘
.

Proof. The number 2n is the only element of Apn, k ´ 1q with n ` 1 binary digits. Any other

element has at most n binary digits, at least one and at most k ´ 1 of them are nonzero (so

they are ones). For eah j P t1, 2, . . . , k ´ 1u, there are
`
n

j

˘
suh elements with exatly j binary

digits equal to one. We onlude that |Apn, k ´ 1q| “ 1 ` řk´1

j“1

`
n

j

˘
“ řk´1

j“0

`
n

j

˘
. l

Realling that the number of insertions exeeds that of merges by exatly 1, we dedue that

the maximum number of moves is 2
řk´1

j“0

`
n

j

˘
´ 1.
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C4.

Let N ě 2 be an integer. NpN ` 1q soer players, no two of the same height, stand

in a row in some order. Coah Ralph wants to remove NpN ´ 1q people from this row so that

in the remaining row of 2N players, no one stands between the two tallest ones, no one stands

between the third and the fourth tallest ones, . . . , and �nally no one stands between the two

shortest ones. Show that this is always possible.

(Russia)

Solution 1. Split the row into N bloks with N ` 1 onseutive people eah. We will show

how to remove N ´ 1 people from eah blok in order to satisfy the oah's wish.

First, onstrut a pN ` 1q ˆ N matrix where xi,j is the height of the ith tallest person of

the jth blok�in other words, eah olumn lists the heights within a single blok, sorted in

dereasing order from top to bottom.

We will reorder this matrix by repeatedly swapping whole olumns. First, by olumn per-

mutation, make sure that x2,1 “ maxtx2,i : i “ 1, 2, . . . , Nu (the �rst olumn ontains the

largest height of the seond row). With the �rst olumn �xed, permute the other ones so that

x3,2 “ maxtx3,i : i “ 2, . . . , Nu (the seond olumn ontains the tallest person of the third row,

�rst olumn exluded). In short, at step k (k “ 1, 2, . . . , N ´ 1), we permute the olumns from

k to N so that xk`1,k “ maxtxi,k : i “ k, k ` 1, . . . , Nu, and end up with an array like this:

x1,1 x1,2 x1,3 ¨ ¨ ¨ x1,N´1 x1,Ną ą ą ą ą ą ą

x2,1 ąąą x2,2 x2,3 ¨ ¨ ¨ x2,N´1 x2,Ną ą ą ą ą ą ą

x3,1 x3,2 ąąą x3,3 ¨ ¨ ¨ x3,N´1 x3,Ną ą ą ą ą ą ą

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.ą ą ą ą ą ą ą

xN,1 xN,2 xN,3 ¨ ¨ ¨ xN,N´1 ąąą xN,Ną ą ą ą ą ą ą

xN`1,1 xN`1,2 xN`1,3¨ ¨ ¨xN`1,N´1 xN`1,N

Now we make the bold hoie: from the original row of people, remove everyone but those

with heights

x1,1 ą x2,1 ą x2,2 ą x3,2 ą ¨ ¨ ¨ ą xN,N´1 ą xN,N ą xN`1,N p˚q
Of ourse this height order p˚q is not neessarily their spatial order in the new row. We now

need to onvine ourselves that eah pair pxk,k; xk`1,kq remains spatially together in this new

row. But xk,k and xk`1,k belong to the same olumn/blok of onseutive N ` 1 people; the

only people that ould possibly stand between them were also in this blok, and they are all

gone.

Solution 2. Split the people into N groups by height : group G1 has the N ` 1 tallest ones,

group G2 has the next N `1 tallest, and so on, up to group GN with the N `1 shortest people.

Now san the original row from left to right, stopping as soon as you have sanned two

people (onseutively or not) from the same group, say, Gi. Sine we have N groups, this must

happen before or at the pN ` 1qth person of the row. Choose this pair of people, removing all

the other people from the same group Gi and also all people that have been sanned so far.

The only people that ould separate this pair's heights were in group Gi (and they are gone);

the only people that ould separate this pair's positions were already sanned (and they are

gone too).

We are now left with N ´ 1 groups (all exept Gi). Sine eah of them lost at most one

person, eah one has at least N unsanned people left in the row. Repeat the sanning proess

from left to right, hoosing the next two people from the same group, removing this group and
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everyone sanned up to that point. One again we end up with two people who are next to

eah other in the remaining row and whose heights annot be separated by anyone else who

remains (sine the rest of their group is gone). After piking these 2 pairs, we still have N ´ 2

groups with at least N ´ 1 people eah.

If we repeat the sanning proess a total of N times, it is easy to hek that we will end

up with 2 people from eah group, for a total of 2N people remaining. The height order is

guaranteed by the grouping, and the sanning onstrution from left to right guarantees that

eah pair from a group stand next to eah other in the �nal row. We are done.

Solution 3. This is essentially the same as solution 1, but presented indutively. The essene

of the argument is the following lemma.

Lemma. Assume that we have N disjoint groups of at least N ` 1 people in eah, all people

have distint heights. Then one an hoose two people from eah group so that among the

hosen people, the two tallest ones are in one group, the third and the fourth tallest ones are

in one group, . . . , and the two shortest ones are in one group.

Proof. Indution on N ě 1; for N “ 1, the statement is trivial.

Consider now N groups G1, . . . , GN with at least N`1 people in eah for N ě 2. Enumerate

the people by 1, 2, . . . , NpN ` 1q aording to their height, say, from tallest to shortest. Find

the least s suh that two people among 1, 2, . . . , s are in one group (without loss of generality,

say this group is GN). By the minimality of s, the two mentioned people in GN are s and some

i ă s.

Now we hoose people i and s in GN , forget about this group, and remove the people

1, 2, . . . , s from G1, . . . , GN´1. Due to minimality of s again, eah of the obtained groups

G1
1
, . . . , G1

N´1
ontains at least N people. By the indution hypothesis, one an hoose a pair

of people from eah of G1
1
, . . . , G1

N´1
so as to satisfy the required onditions. Sine all these

people have numbers greater than s, addition of the pair ps, iq from GN does not violate these

requirements. l

To solve the problem, it su�es now to split the row into N ontiguous groups with N ` 1

people in eah and apply the Lemma to those groups.

Comment 1. One an identify eah person with a pair of indies pp, hq (p, h P t1, 2, . . . , NpN ` 1qu)
so that the pth person in the row (say, from left to right) is the hth tallest person in the group. Say

that pa, bq separates px1, y1q and px2, y2q whenever a is stritly between x1 and y1, or b is stritly

between x2 and y2. So the oah wants to pik 2N people ppi, hiqpi “ 1, 2, . . . , 2Nq suh that no hosen

person separates pp1, h1q from pp2, h2q, no hosen person separates pp3, h3q and pp4, h4q, and so on.

This formulation reveals a duality between positions and heights. In that sense, solutions 1 and 2 are

dual of eah other.

Comment 2. The number NpN ` 1q is sharp for N “ 2 and N “ 3, due to arrangements 1, 5, 3, 4, 2
and 1, 10, 6, 4, 3, 9, 5, 8, 7, 2, 11.
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C5.

A hunter and an invisible rabbit play a game in the Eulidean plane. The hunter's

starting point H0 oinides with the rabbit's starting point R0. In the nth

round of the game

(n ě 1), the following happens.

(1) First the invisible rabbit moves seretly and unobserved from its urrent point Rn´1 to

some new point Rn with Rn´1Rn “ 1.

(2) The hunter has a traking devie (e.g. dog) that returns an approximate position R1
n of

the rabbit, so that RnR
1
n ď 1.

(3) The hunter then visibly moves from point Hn´1 to a new point Hn with Hn´1Hn “ 1.

Is there a strategy for the hunter that guarantees that after 109 suh rounds the distane

between the hunter and the rabbit is below 100?

(Austria)

Answer: There is no suh strategy for the hunter. The rabbit �wins".

Solution. If the answer were �yes", the hunter would have a strategy that would �work", no

matter how the rabbit moved or where the radar pings R1
n appeared. We will show the opposite:

with bad luk from the radar pings, there is no strategy for the hunter that guarantees that

the distane stays below 100 in 109 rounds.

So, let dn be the distane between the hunter and the rabbit after n rounds. Of ourse, if

dn ě 100 for any n ă 109, the rabbit has won � it just needs to move straight away from the

hunter, and the distane will be kept at or above 100 thereon.

We will now show that, while dn ă 100, whatever given strategy the hunter follows, the

rabbit has a way of inreasing d2n by at least

1

2
every 200 rounds (as long as the radar pings are

luky enough for the rabbit). This way, d2n will reah 104 in less than 2 ¨104 ¨200 “ 4 ¨106 ă 109

rounds, and the rabbit wins.

Suppose the hunter is at Hn and the rabbit is at Rn. Suppose even that the rabbit reveals

its position at this moment to the hunter (this allows us to ignore all information from previous

radar pings). Let r be the line HnRn, and Y1 and Y2 be points whih are 1 unit away from r

and 200 units away from Rn, as in the �gure below.

r dn

Hn Rn

200

200

200− dn

Z

1

1

Y1

Y2

ε

y

y

R′
H ′

The rabbit's plan is simply to hoose one of the points Y1 or Y2 and hop 200 rounds straight

towards it. Sine all hops stay within 1 distane unit from r, it is possible that all radar pings

stay on r. In partiular, in this ase, the hunter has no way of knowing whether the rabbit

hose Y1 or Y2.

Looking at suh pings, what is the hunter going to do? If the hunter's strategy tells him to

go 200 rounds straight to the right, he ends up at point H 1
in the �gure. Note that the hunter

does not have a better alternative! Indeed, after these 200 rounds he will always end up at

a point to the left of H 1
. If his strategy took him to a point above r, he would end up even

further from Y2; and if his strategy took him below r, he would end up even further from Y1.

In other words, no matter what strategy the hunter follows, he an never be sure his distane

to the rabbit will be less than y
def“ H 1Y1 “ H 1Y2 after these 200 rounds.

To estimate y2, we take Z as the midpoint of segment Y1Y2, we take R
1
as a point 200 units

to the right of Rn and we de�ne ε “ ZR1
(note that H 1R1 “ dn). Then
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y2 “ 1 ` pH 1Zq2 “ 1 ` pdn ´ εq2

where

ε “ 200 ´ RnZ “ 200 ´
?
2002 ´ 1 “ 1

200 `
?
2002 ´ 1

ą 1

400
.

In partiular, ε2 ` 1 “ 400ε, so

y2 “ d2n ´ 2εdn ` ε2 ` 1 “ d2n ` εp400 ´ 2dnq.

Sine ε ą 1

400
and we assumed dn ă 100, this shows that y2 ą d2n` 1

2
. So, as we laimed, with this

list of radar pings, no matter what the hunter does, the rabbit might ahieve d2n`200
ą d2n ` 1

2
.

The wabbit wins.

Comment 1. Many di�erent versions of the solution above an be found by replaing 200 with some

other number N for the number of hops the rabbit takes between reveals. If this is done, we have:

ε “ N ´
a
N2 ´ 1 ą 1

N `
?
N2 ´ 1

ą 1

2N

and

ε2 ` 1 “ 2Nε,

so, as long as N ą dn, we would �nd

y2 “ d2n ` εp2N ´ 2dnq ą d2n ` N ´ dn

N
.

For example, taking N “ 101 is already enough�the squared distane inreases by at least

1

101
every

101 rounds, and 1012 ¨ 104 “ 1.0201 ¨ 108 ă 109 rounds are enough for the rabbit. If the statement is

made sharper, some suh versions might not work any longer.

Comment 2. The original statement asked whether the distane ould be kept under 1010 in 10100

rounds.
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C6.

Let n ą 1 be an integer. An n ˆ n ˆ n ube is omposed of n3
unit ubes. Eah

unit ube is painted with one olor. For eah n ˆ n ˆ 1 box onsisting of n2
unit ubes (of any

of the three possible orientations), we onsider the set of the olors present in that box (eah

olor is listed only one). This way, we get 3n sets of olors, split into three groups aording

to the orientation. It happens that for every set in any group, the same set appears in both

of the other groups. Determine, in terms of n, the maximal possible number of olors that are

present.

(Russia)

Answer: The maximal number is

npn`1qp2n`1q
6

.

Solution 1. Call a n ˆ n ˆ 1 box an x-box, a y-box, or a z-box, aording to the diretion of

its short side. Let C be the number of olors in a valid on�guration. We start with the upper

bound for C.

Let C1, C2, and C3 be the sets of olors whih appear in the big ube exatly one, exatly

twie, and at least thrie, respetively. Let Mi be the set of unit ubes whose olors are in Ci,
and denote ni “ |Mi|.

Consider any x-box X , and let Y and Z be a y- and a z-box ontaining the same set of

olors as X does.

Claim. 4|X X M1| ` |X X M2| ď 3n ` 1.

Proof. We distinguish two ases.

Case 1: X X M1 ‰ ∅.

A ube from X X M1 should appear in all three boxes X , Y , and Z, so it should lie in

X X Y X Z. Thus X X M1 “ X X Y X Z and |X X M1| “ 1.

Consider now the ubes in X X M2. There are at most 2pn ´ 1q of them lying in X X Y or

X X Z (beause the ube from X X Y X Z is in M1). Let a be some other ube from X X M2.

Reall that there is just one other ube a1
sharing a olor with a. But both Y and Z should

ontain suh ube, so a1 P Y X Z (but a1 R X X Y X Z). The map a ÞÑ a1
is learly injetive,

so the number of ubes a we are interested in does not exeed |pY X Zq z X| “ n ´ 1. Thus

|XXM2| ď 2pn´1q`pn´1q “ 3pn´1q, and hene 4|XXM1|`|XXM2| ď 4`3pn´1q “ 3n`1.

Case 2: X X M1 “ ∅.

In this ase, the same argument applies with several hanges. Indeed, X X M2 ontains

at most 2n ´ 1 ubes from X X Y or X X Z. Any other ube a in X X M2 orresponds to

some a1 P Y X Z (possibly with a1 P X), so there are at most n of them. All this results in

|X X M2| ď p2n ´ 1q ` n “ 3n ´ 1, whih is even better than we need (by the assumptions of

our ase). l

Summing up the inequalities from the Claim over all x-boxes X , we obtain

4n1 ` n2 ď np3n ` 1q.

Obviously, we also have n1 ` n2 ` n3 “ n3
.

Now we are prepared to estimate C. Due to the de�nition of the Mi, we have ni ě i|Ci|, so

C ď n1 ` n2

2
` n3

3
“ n1 ` n2 ` n3

3
` 4n1 ` n2

6
ď n3

3
` 3n2 ` n

6
“ npn ` 1qp2n ` 1q

6
.

It remains to present an example of an appropriate oloring in the above-mentioned number

of olors. For eah olor, we present the set of all ubes of this olor. These sets are:

1. n singletons of the form Si “ tpi, i, iqu (with 1 ď i ď n);

2. 3
`
n

2

˘
doubletons of the forms D1

i,j “ tpi, j, jq, pj, i, iqu, D2

i,j “ tpj, i, jq, pi, j, iqu, and D3

i,j “
tpj, j, iq, pi, i, jqu (with 1 ď i ă j ď n);
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3. 2
`
n

3

˘
triplets of the form Ti,j,k “ tpi, j, kq, pj, k, iq, pk, i, jqu (with 1 ď i ă j ă k ď n or

1 ď i ă k ă j ď n).

One may easily see that the ith boxes of eah orientation ontain the same set of olors, and

that

n ` 3npn ´ 1q
2

` npn ´ 1qpn ´ 2q
3

“ npn ` 1qp2n ` 1q
6

olors are used, as required.

Solution 2. We will approah a new version of the original problem. In this new version, eah

ube may have a olor, or be invisible (not both). Now we make sets of olors for eah nˆnˆ1

box as before (where �invisible" is not onsidered a olor) and group them by orientation, also

as before. Finally, we require that, for every non-empty set in any group, the same set must

appear in the other 2 groups. What is the maximum number of olors present with these new

requirements?

Let us all strange a big nˆnˆn ube whose painting sheme satis�es the new requirements,

and let D be the number of olors in a strange ube. Note that any ube that satis�es the

original requirements is also strange, so maxpDq is an upper bound for the original answer.

Claim. D ď npn`1qp2n`1q
6

.

Proof. The proof is by indution on n. If n “ 1, we must paint the ube with at most 1 olor.

Now, pik a nˆnˆn strange ube A, where n ě 2. If A is ompletely invisible, D “ 0 and

we are done. Otherwise, pik a non-empty set of olors S whih orresponds to, say, the boxes

X , Y and Z of di�erent orientations.

Now �nd all ubes in A whose olors are in S and make them invisible. Sine X , Y

and Z are now ompletely invisible, we an throw them away and fous on the remaining

pn ´ 1q ˆ pn ´ 1q ˆ pn ´ 1q ube B. The sets of olors in all the groups for B are the same

as the sets for A, removing exatly the olors in S, and no others! Therefore, every nonempty

set that appears in one group for B still shows up in all possible orientations (it is possible

that an empty set of olors in B only mathed X , Y or Z before these were thrown away, but

remember we do not require empty sets to math anyway). In summary, B is also strange.

By the indution hypothesis, we may assume that B has at most

pn´1qnp2n´1q
6

olors. Sine

there were at most n2
di�erent olors in S, we have that A has at most

pn´1qnp2n´1q
6

` n2 “
npn`1qp2n`1q

6
olors. l

Finally, the onstrution in the previous solution shows a painting sheme (with no invisible

ubes) that reahes this maximum, so we are done.
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C7.

For any �nite sets X and Y of positive integers, denote by fXpkq the kth

smallest

positive integer not in X , and let

X ˚ Y “ X Y tfXpyq : y P Y u.

Let A be a set of a ą 0 positive integers, and let B be a set of b ą 0 positive integers. Prove

that if A ˚ B “ B ˚ A, then

A ˚ pA ˚ ¨ ¨ ¨ ˚ pA ˚ pA ˚ Aqq . . . qlooooooooooooooooooomooooooooooooooooooon
A appears b times

“ B ˚ pB ˚ ¨ ¨ ¨ ˚ pB ˚ pB ˚ Bqq . . . qlooooooooooooooooooomooooooooooooooooooon
B appears a times

.

(U.S.A.)

Solution 1. For any funtion g : Zą0 Ñ Zą0 and any subset X Ă Zą0, we de�ne gpXq “
tgpxq : x P Xu. We have that the image of fX is fXpZą0q “ Zą0 z X . We now show a general

lemma about the operation ˚, with the goal of showing that ˚ is assoiative.

Lemma 1. Let X and Y be �nite sets of positive integers. The funtions fX˚Y and fX ˝ fY are

equal.

Proof. We have

fX˚Y pZą0q “ Zą0zpX˚Y q “ pZą0zXqzfXpY q “ fXpZą0qzfXpY q “ fXpZą0zY q “ fXpfY pZą0qq.

Thus, the funtions fX˚Y and fX ˝ fY are stritly inreasing funtions with the same range.

Beause a stritly funtion is uniquely de�ned by its range, we have fX˚Y “ fX ˝ fY . l

Lemma 1 implies that ˚ is assoiative, in the sense that pA ˚ Bq ˚ C “ A ˚ pB ˚ Cq for any

�nite sets A,B, and C of positive integers. We prove the assoiativity by noting

Zą0 z ppA ˚ Bq ˚ Cq “ fpA˚Bq˚CpZą0q “ fA˚BpfCpZą0qq “ fApfBpfCpZą0qqq

“ fApfB˚CpZą0q “ fA˚pB˚CqpZą0q “ Zą0 z pA ˚ pB ˚ Cqq.
In light of the assoiativity of ˚, we may drop the parentheses when we write expressions

like A ˚ pB ˚ Cq. We also introdue the notation

X˚k “ X ˚ pX ˚ ¨ ¨ ¨ ˚ pX ˚ pX ˚ Xqq . . . qloooooooooooooooooooomoooooooooooooooooooon
X appears k times

.

Our goal is then to show that A ˚B “ B ˚A implies A˚b “ B˚a
. We will do so via the following

general lemma.

Lemma 2. Suppose that X and Y are �nite sets of positive integers satisfying X ˚ Y “ Y ˚ X
and |X| “ |Y |. Then, we must have X “ Y .

Proof. Assume that X and Y are not equal. Let s be the largest number in exatly one of

X and Y . Without loss of generality, say that s P X z Y . The number fXpsq ounts the sth

number not in X , whih implies that

fXpsq “ s `
ˇ̌
X X t1, 2, . . . , fXpsqu

ˇ̌
. (1)

Sine fXpsq ě s, we have that

 
fXpsq ` 1, fXpsq ` 2, . . .

(
X X “

 
fXpsq ` 1, fXpsq ` 2, . . .

(
X Y,

whih, together with the assumption that |X| “ |Y |, gives
ˇ̌
X X t1, 2, . . . , fXpsqu

ˇ̌
“
ˇ̌
Y X t1, 2, . . . , fXpsqu

ˇ̌
. (2)
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Now onsider the equation

t ´
ˇ̌
Y X t1, 2, . . . , tu

ˇ̌
“ s.

This equation is satis�ed only when t P
“
fY psq, fY ps ` 1q

˘
, beause the left hand side ounts

the number of elements up to t that are not in Y . We have that the value t “ fXpsq satis�es
the above equation beause of (1) and (2). Furthermore, sine fXpsq R X and fXpsq ě s, we

have that fXpsq R Y due to the maximality of s. Thus, by the above disussion, we must have

fXpsq “ fY psq.
Finally, we arrive at a ontradition. The value fXpsq is neither in X nor in fXpY q, beause

s is not in Y by assumption. Thus, fXpsq R X ˚Y . However, sine s P X , we have fY psq P Y ˚X ,

a ontradition. l

We are now ready to �nish the proof. Note �rst of all that |A˚b| “ ab “ |B˚a|. Moreover,

sine A ˚ B “ B ˚ A, and ˚ is assoiative, it follows that A˚b ˚ B˚a “ B˚a ˚ A˚b
. Thus, by

Lemma 2, we have A˚b “ B˚a
, as desired.

Comment 1. Taking A “ X˚k
and B “ X˚l

generates many non-trivial examples where A˚B “ B˚A.
There are also other examples not of this form. For example, if A “ t1, 2, 4u and B “ t1, 3u, then
A ˚ B “ t1, 2, 3, 4, 6u “ B ˚ A.

Solution 2. We will use Lemma 1 from Solution 1. Additionally, let X˚k
be de�ned as in

Solution 1. If X and Y are �nite sets, then

fX “ fY ðñ fXpZą0q “ fY pZą0q ðñ pZą0 z Xq “ pZą0 z Y q ðñ X “ Y, (3)

where the �rst equivalene is beause fX and fY are stritly inreasing funtions, and the seond

equivalene is beause fXpZą0q “ Zą0 z X and fY pZą0q “ Zą0 z Y .
Denote g “ fA and h “ fB. The given relation A ˚ B “ B ˚ A is equivalent to fA˚B “ fB˚A

beause of (3), and by Lemma 1 of the �rst solution, this is equivalent to g˝h “ h˝g. Similarly,

the required relation A˚b “ B˚a
is equivalent to gb “ ha

. We will show that

gbpnq “ hapnq (4)

for all n P Zą0, whih su�es to solve the problem.

To start, we laim that (4) holds for all su�iently large n. Indeed, let p and q be the

maximal elements of A and B, respetively; we may assume that p ě q. Then, for every n ě p

we have gpnq “ n ` a and hpnq “ n ` b, whene gbpnq “ n ` ab “ hapnq, as was laimed.

In view of this laim, if (4) is not identially true, then there exists a maximal s with gbpsq ‰
hapsq. Without loss of generality, we may assume that gpsq ‰ s, for if we had gpsq “ hpsq “ s,

then s would satisfy (4). As g is inreasing, we then have gpsq ą s, so (4) holds for n “ gpsq.
But then we have

gpgbpsqq “ gb`1psq “ gbpnq “ hapnq “ hapgpsqq “ gphapsqq,
where the last equality holds in view of g ˝ h “ h ˝ g. By the injetivity of g, the above

equality yields gbpsq “ hapsq, whih ontradits the hoie of s. Thus, we have proved that (4)

is identially true on Zą0, as desired.

Comment 2. We present another proof of Lemma 2 of the �rst solution.

Let x “ |X| “ |Y |. Say that u is the smallest number in X and v is the smallest number in Y ;

assume without loss of generality that u ď v.

Let T be any �nite set of positive integers, and de�ne t “ |T |. Enumerate the elements of X as

x1 ă x2 ă ¨ ¨ ¨ ă xn. De�ne Sm “ fpT˚X˚pm´1qqpXq, and enumerate its elements sm,1 ă sm,2 ă ¨ ¨ ¨ ă
sm,n. Note that the Sm are pairwise disjoint; indeed, if we have m ă m1

, then

Sm Ă T ˚ X˚m Ă T ˚ X˚pm1´1q
and Sm1 “ pT ˚ X˚m1 q z pT ˚ X˚pm1´1qq

We laim the following statement, whih essentially says that the Sm are eventually linear translates

of eah other:
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Claim. For every i, there exists somemi and ci suh that for allm ą mi, we have that sm,i “ t`mn´ci.

Furthermore, the ci do not depend on the hoie of T .

First, we show that this laim implies Lemma 2. We may hoose T “ X and T “ Y . Then, there

is some m1
suh that for all m ě m1

, we have

fX˚mpXq “ fpY ˚X˚pm´1qqpXq. (5)

Beause u is the minimum element of X, v is the minimum element of Y , and u ď v, we have that

˜
8ď

m“m1

fX˚mpXq
¸

Y X˚m1 “
˜

8ď

m“m1

fpY ˚X˚pm´1qqpXq
¸

Y
`
Y ˚ X˚pm1´1q

˘
“ tu, u ` 1, . . . u,

and in both the �rst and seond expressions, the unions are of pairwise distint sets. By (5), we obtain

X˚m1 “ Y ˚X˚pm1´1q
. Now, beause X and Y ommute, we get X˚m1 “ X˚pm1´1q ˚Y , and so X “ Y .

We now prove the laim.

Proof of the laim. We indut downwards on i, �rst proving the statement for i “ n, and so on.

Assume that m is hosen so that all elements of Sm are greater than all elements of T (whih is

possible beause T is �nite). For i “ n, we have that sm,n ą sk,n for every k ă m. Thus, all pm ´ 1qn
numbers of the form sk,u for k ă m and 1 ď u ď n are less than sm,n. We then have that sm,n is the

ppm´1qn`xnqth number not in T , whih is equal to t` pm´1qn`xn. So we may hoose cn “ xn ´n,

whih does not depend on T , whih proves the base ase for the indution.

For i ă n, we have again that all elements sm,j for j ă i and sp,i for p ă m are less than sm,i,

so sm,i is the ppm ´ 1qi ` xiqth element not in T or of the form sp,j for j ą i and p ă m. But by

the indutive hypothesis, eah of the sequenes sp,j is eventually periodi with period n, and thus the

sequene sm,i suh must be as well. Sine eah of the sequenes sp,j ´ t with j ą i eventually do not

depend on T , the sequene sm,i ´ t eventually does not depend on T either, so the indutive step is

omplete. This proves the laim and thus Lemma 2. l
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C8.

Let n be a given positive integer. In the Cartesian plane, eah lattie point with

nonnegative oordinates initially ontains a butter�y, and there are no other butter�ies. The

neighborhood of a lattie point c onsists of all lattie points within the axis-aligned p2n` 1q ˆ
p2n ` 1q square entered at c, apart from c itself. We all a butter�y lonely, rowded, or om-

fortable, depending on whether the number of butter�ies in its neighborhood N is respetively

less than, greater than, or equal to half of the number of lattie points in N .

Every minute, all lonely butter�ies �y away simultaneously. This proess goes on for as

long as there are any lonely butter�ies. Assuming that the proess eventually stops, determine

the number of omfortable butter�ies at the �nal state.

(Bulgaria)

Answer: n2 ` 1.

Solution.We always identify a butter�y with the lattie point it is situated at. For two points p

and q, we write p ě q if eah oordinate of p is at least the orresponding oordinate of q. Let

O be the origin, and let Q be the set of initially oupied points, i.e., of all lattie points with

nonnegative oordinates. Let RH “ tpx, 0q : x ě 0u and RV “ tp0, yq : y ě 0u be the sets of

the lattie points lying on the horizontal and vertial boundary rays of Q. Denote by Npaq the
neighborhood of a lattie point a.

1. Initial observations. We all a set of lattie points up-right losed if its points stay in the

set after being shifted by any lattie vetor pi, jq with i, j ě 0. Whenever the butter�ies form a

up-right losed set S, we have |Nppq X S| ě |Npqq X S| for any two points p, q P S with p ě q.

So, sine Q is up-right losed, the set of butter�ies at any moment also preserves this property.

We assume all forthoming sets of lattie points to be up-right losed.

When speaking of some set S of lattie points, we all its points lonely, omfortable, or

rowded with respet to this set (i.e., as if the butter�ies were exatly at all points of S). We

all a set S Ă Q stable if it ontains no lonely points. In what follows, we are interested only

in those stable sets whose omplements in Q are �nite, beause one an easily see that only a

�nite number of butter�ies an �y away on eah minute.

If the initial set Q of butter�ies ontains some stable set S, then, learly no butter�y of

this set will �y away. On the other hand, the set F of all butter�ies in the end of the proess

is stable. This means that F is the largest (with respet to inlusion) stable set within Q, and

we are about to desribe this set.

2. A desription of a �nal set. The following notion will be useful. Let U “ t~u1, ~u2, . . . , ~udu
be a set of d pairwise non-parallel lattie vetors, eah having a positive x- and a negative

y-oordinate. Assume that they are numbered in inreasing order aording to slope. We now

de�ne a U-urve to be the broken line p0p1 . . . pd suh that p0 P RV, pd P RH, and
ÝÝÝÑpi´1pi “ ~ui

for all i “ 1, 2, . . . , m (see the Figure below to the left).

~u1
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~u1

~u2

~u3

~u4 O

p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0p0

p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1p1

p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2p2

p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3p3

p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4p4

−
→

−→

r1 r2 r3 r4 (k4 = 3)

~v1
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d1
d2

d3
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Constrution of U-urve Constrution of D
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Now, let Kn “ tpi, jq : 1 ď i ď n, ´n ď j ď ´1u. Consider all the rays emerging at O and

passing through a point from Kn; number them as r1, . . . , rm in inreasing order aording to

slope. Let Ai be the farthest from O lattie point in ri X Kn, set ki “ |ri X Kn|, let ~vi “ ÝÝÑ
OAi,

and �nally denote V “ t~vi : 1 ď i ď mu; see the Figure above to the right. We will onentrate

on the V-urve d0d1 . . . dm; let D be the set of all lattie points p suh that p ě p1
for some (not

neessarily lattie) point p1
on the V-urve. In fat, we will show that D “ F .

Clearly, the V-urve is symmetri in the line y “ x. Denote by D the onvex hull of D.

3. We prove that the set D ontains all stable sets. Let S Ă Q be a stable set (reall that

it is assumed to be up-right losed and to have a �nite omplement in Q). Denote by S its

onvex hull; learly, the verties of S are lattie points. The boundary of S onsists of two rays

(horizontal and vertial ones) along with some V˚-urve for some set of lattie vetors V˚.

Claim 1. For every ~vi P V, there is a ~v ˚
i P V˚ o-direted with ~v with |~v ˚

i | ě |~v|.
Proof. Let ℓ be the supporting line of S parallel to ~vi (i.e., ℓ ontains some point of S, and

the set S lies on one side of ℓ). Take any point b P ℓ X S and onsider Npbq. The line ℓ splits

the set Npbq z ℓ into two ongruent parts, one having an empty intersetion with S. Hene, in
order for b not to be lonely, at least half of the set ℓ X Npbq (whih ontains 2ki points) should

lie in S. Thus, the boundary of S ontains a segment ℓ X S with at least ki ` 1 lattie points

(inluding b) on it; this segment orresponds to the required vetor ~v ˚
i P V˚. l
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∂D

∂S

Proof of Claim 1 Proof of Claim 2

Claim 2. Eah stable set S Ď Q lies in D.

Proof. To show this, it su�es to prove that the V˚-urve lies in D, i.e., that all its verties

do so. Let p1
be an arbitrary vertex of the V˚-urve; p

1
partitions this urve into two parts, X

(being down-right of p) and Y (being up-left of p). The set V is split now into two parts: VX

onsisting of those ~vi P V for whih ~v ˚
i orresponds to a segment in X , and a similar part VY .

Notie that the V-urve onsists of several segments orresponding to VX , followed by those

orresponding to VY . Hene there is a vertex p of the V-urve separating VX from VY . Claim 1

now yields that p1 ě p, so p1 P D, as required. l

Claim 2 implies that the �nal set F is ontained in D.

4. D is stable, and its omfortable points are known. Reall the de�nitions of ri; let r
1
i be the

ray omplementary to ri. By our de�nitions, the set NpOq ontains no points between the rays

ri and ri`1, as well as between r1
i and r1

i`1
.

Claim 3. In the set D, all lattie points of the V-urve are omfortable.

Proof. Let p be any lattie point of the V-urve, belonging to some segment didi`1. Draw the

line ℓ ontaining this segment. Then ℓXD ontains exatly ki `1 lattie points, all of whih lie

in Nppq exept for p. Thus, exatly half of the points in Nppq X ℓ lie in D. It remains to show

that all points of Nppq above ℓ lie in D (reall that all the points below ℓ lak this property).
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Notie that eah vetor in V has one oordinate greater than n{2; thus the neighborhood

of p ontains parts of at most two segments of the V-urve sueeding didi`1, as well as at most

two of those preeding it.

The angles formed by these onseutive segments are obtained from those formed by rj and

r1
j´1

(with i ´ 1 ď j ď i ` 2) by shifts; see the Figure below. All the points in Nppq above ℓ

whih ould lie outside D lie in shifted angles between rj, rj`1 or r1
j, r

1
j´1

. But those angles,

restrited to Nppq, have no lattie points due to the above remark. The laim is proved. l

Kn

ri−1

ri

ri+1

ri+2

r′
i+2

r′
i−1

p

di

di+1

di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2di+2

Proof of Claim 3

Claim 4. All the points of D whih are not on the boundary of D are rowded.

Proof. Let p P D be suh a point. If it is to the up-right of some point p1
on the urve, then the

laim is easy: the shift of Npp1q X D by

ÝÑ
p1p is still in D, and Nppq ontains at least one more

point of D � either below or to the left of p. So, we may assume that p lies in a right triangle

onstruted on some hypothenuse didi`1. Notie here that di, di`1 P Nppq.
Draw a line ℓ ‖ didi`1 through p, and draw a vertial line h through di; see Figure below.

Let DL and DR be the parts of D lying to the left and to the right of h, respetively (points

of D X h lie in both parts).

dididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididididi

di+1

p

h

ℓ

p
di

di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1di+1

−→

Proof of Claim 4

Notie that the vetors

ÝÑ
dip,

ÝÝÝÝÝÑ
di`1di`2,

ÝÝÝÑ
didi`1,

ÝÝÝÑ
di´1di, and

ÝÝÝÑ
pdi`1 are arranged in non-inreasing

order by slope. This means that DL shifted by

ÝÑ
dip still lies in D, as well as DR shifted by

ÝÝÝÑ
di`1p.

As we have seen in the proof of Claim 3, these two shifts over all points of Nppq above ℓ, along
with those on ℓ to the left of p. Sine Nppq ontains also di and di`1, the point p is rowded.

l

Thus, we have proved that D “ F , and have shown that the lattie points on the V-urve
are exatly the omfortable points of D. It remains to �nd their number.

Reall the de�nition of Kn (see Figure on the �rst page of the solution). Eah segment didi`1

ontains ki lattie points di�erent from di. Taken over all i, these points exhaust all the lattie

points in the V-urve, exept for d1, and thus the number of lattie points on the V-urve is

1 ` řm

i“1
ki. On the other hand,

řm

i“1
ki is just the number of points in Kn, so it equals n2

.

Hene the answer to the problem is n2 ` 1.
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Comment 1. The assumption that the proess eventually stops is unneessary for the problem, as

one an see that, in fat, the proess stops for every n ě 1. Indeed, the proof of Claims 3 and 4 do not

rely essentially on this assumption, and they together yield that the set D is stable. So, only butter�ies

that are not in D may �y away, and this takes only a �nite time.

This assumption has been inserted into the problem statement in order to avoid several tehnial

details regarding �niteness issues. It may also simplify several other arguments.

Comment 2. The desription of the �nal set Fp“ Dq seems to be ruial for the solution; the

Problem Seletion Committee is not aware of any solution that ompletely avoids suh a desription.

On the other hand, after the set D has been de�ned, the further steps may be performed in several

ways. For example, in order to prove that all butter�ies outside D will �y away, one may argue as

follows. (Here we will also make use of the assumption that the proess eventually stops.)

First of all, notie that the proess an be modi�ed in the following manner: Eah minute, exatly

one of the lonely butter�ies �ies away, until there are no more lonely butter�ies. The modi�ed proess

neessarily stops at the same state as the initial one. Indeed, one may observe, as in solution above,

that the (unique) largest stable set is still the �nal set for the modi�ed proess.

Thus, in order to prove our laim, it su�es to indiate an order in whih the butter�ies should �y

away in the new proess; if we are able to exhaust the whole set Q z D, we are done.
Let C0 “ d0d1 . . . dm be the V-urve. Take its opy C and shift it downwards so that d0 omes to

some point below the origin O. Now we start moving C upwards ontinuously, until it omes bak to its

initial position C0. At eah moment when C meets some lattie points, we onvine all the butter�ies at

those points to �y away in a ertain order. We will now show that we always have enough arguments

for butter�ies to do so, whih will �nish our argument for the laim..

Let C1 “ d1
0
d1
1
. . . d1

m be a position of C when it meets some butter�ies. We assume that all butter�ies

under this urrent position of C were already onvined enough and �ied away. Consider the lowest

butter�y b on C1
. Let d1

id
1
i`1

be the segment it lies on; we hoose i so that b ‰ d1
i`1

(this is possible

beause C as not yet reahed C0).
Draw a line ℓ ontaining the segment d1

id
1
i`1

. Then all the butter�ies in Npbq are situated on or

above ℓ; moreover, those on ℓ all lie on the segment didi`1. But this segment now ontains at most ki
butter�ies (inluding b), sine otherwise some butter�y had to oupy d1

i`1
whih is impossible by the

hoie of b. Thus, b is lonely and hene may be onvined to �y away.

After b has �ied away, we swith to the lowest of the remaining butter�ies on C1
, and so on.

Claims 3 and 4 also allow some di�erent proofs whih are not presented here.
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Geometry

G1.

Let ABCDE be a onvex pentagon suh that AB “ BC “ CD, =EAB “ =BCD, and

=EDC “ =CBA. Prove that the perpendiular line from E to BC and the line segments AC

and BD are onurrent.

(Italy)

Solution 1. Throughout the solution, we refer to =A, =B, =C, =D, and =E as internal

angles of the pentagon ABCDE. Let the perpendiular bisetors of AC and BD, whih pass

respetively through B and C, meet at point I. Then BD K CI and, similarly, AC K BI.

Hene AC and BD meet at the orthoenter H of the triangle BIC, and IH K BC. It remains

to prove that E lies on the line IH or, equivalently, EI K BC.

Lines IB and IC biset =B and =C, respetively. Sine IA “ IC, IB “ ID, and AB “
BC “ CD, the triangles IAB, ICB and ICD are ongruent. Hene =IAB “ =ICB “
=C{2 “ =A{2, so the line IA bisets =A. Similarly, the line ID bisets =D. Finally, the

line IE bisets =E beause I lies on all the other four internal bisetors of the angles of the

pentagon.

The sum of the internal angles in a pentagon is 5400
, so

=E “ 5400 ´ 2=A ` 2=B.

In quadrilateral ABIE,

=BIE “ 3600 ´ =EAB ´ =ABI ´ =AEI “ 3600 ´ =A ´ 1

2
=B ´ 1

2
=E

“ 3600 ´ =A ´ 1

2
=B ´ p2700 ´ =A ´ =Bq

“ 900 ` 1

2
=B “ 900 ` =IBC,

whih means that EI K BC, ompleting the proof.

A

E

D

B T C

I

H

Solution 2. We present another proof of the fat that E lies on line IH . Sine all �ve internal

bisetors of ABCDE meet at I, this pentagon has an insribed irle with enter I. Let this

irle touh side BC at T .

Applying Brianhon's theorem to the (degenerate) hexagon ABTCDE we onlude that

AC, BD and ET are onurrent, so point E also lies on line IHT , ompleting the proof.
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Solution 3. We present yet another proof that EI K BC. In pentagon ABCDE, =E ă
1800 ðñ =A ` =B ` =C ` =D ą 3600

. Then =A ` =B “ =C ` =D ą 1800
, so rays EA

and CB meet at a point P , and rays BC and ED meet at a point Q. Now,

=PBA “ 1800 ´ =B “ 1800 ´ =D “ =QDC

and, similarly, =PAB “ =QCD. Sine AB “ CD, the triangles PAB and QCD are ongruent

with the same orientation. Moreover, PQE is isoseles with EP “ EQ.

A

E

B C

I

H

P Q

D

In Solution 1 we have proved that triangles IAB and ICD are also ongruent with the

same orientation. Then we onlude that quadrilaterals PBIA and QDIC are ongruent,

whih implies IP “ IQ. Then EI is the perpendiular bisetor of PQ and, therefore, EI K
PQ ðñ EI K BC.

Comment. Even though all three solutions used the point I, there are solutions that do not need it.

We present an outline of suh a solution: if J is the inenter of △QCD (with P and Q as de�ned in

Solution 3), then a simple angle hasing shows that triangles CJD and BHC are ongruent. Then if

S is the projetion of J onto side CD and T is the orthogonal projetion of H onto side BC, one an

verify that

QT “ QC ` CT “ QC ` DS “ QC ` CD ` DQ ´ QC

2
“ PB ` BC ` QC

2
“ PQ

2
,

so T is the midpoint of PQ, and E, H and T all lie on the perpendiular bisetor of PQ.
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G2.

Let R and S be distint points on irle Ω, and let t denote the tangent line to Ω at R.

Point R1
is the re�etion of R with respet to S. A point I is hosen on the smaller ar RS of

Ω so that the irumirle Γ of triangle ISR1
intersets t at two di�erent points. Denote by A

the ommon point of Γ and t that is losest to R. Line AI meets Ω again at J . Show that JR1

is tangent to Γ.

(Luxembourg)

Solution 1. In the irles Ω and Γ we have =JRS “ =JIS “ =AR1S. On the other hand,

sine RA is tangent to Ω, we get =SJR “ =SRA. So the triangles ARR1
and SJR are similar,

and

R1R

RJ
“ AR1

SR
“ AR1

SR1
.

The last relation, together with =AR1S “ =JRR1
, yields △ASR1 „ △R1JR, hene

=SAR1 “ =RR1J . It follows that JR1
is tangent to Γ at R1

.

R

S

R′

A

I

J

Ω

ω
R

S

R′

A

I

J

A′

Ω

ω

Solution 1 Solution 2

Solution 2. As in Solution 1, we notie that =JRS “ =JIS “ =AR1S, so we have RJ ‖ AR1
.

Let A1
be the re�etion of A about S; then ARA1R1

is a parallelogram with enter S, and

hene the point J lies on the line RA1
.

From =SR1A1 “ =SRA “ =SJR we get that the points S, J, A1, R1
are onyli. This

proves that =SR1J “ =SA1J “ =SA1R “ =SAR1
, so JR1

is tangent to Γ at R1
.



Shortlisted problems � solutions 59

G3.

Let O be the irumenter of an aute salene triangle ABC. Line OA intersets the

altitudes of ABC through B and C at P and Q, respetively. The altitudes meet at H . Prove

that the irumenter of triangle PQH lies on a median of triangle ABC.

(Ukraine)

Solution. Suppose, without loss of generality, that AB ă AC. We have =PQH “ 900 ´
=QAB “ 900 ´ =OAB “ 1

2
=AOB “ =ACB, and similarly =QPH “ =ABC. Thus triangles

ABC and HPQ are similar. Let Ω and ω be the irumirles of ABC and HPQ, respetively.

Sine =AHP “ 900 ´ =HAC “ =ACB “ =HQP , line AH is tangent to ω.

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
C

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH T

MS

O

Ω

ω

Let T be the enter of ω and let lines AT and BC meet at M . We will take advantage

of the similarity between ABC and HPQ and the fat that AH is tangent to ω at H , with

A on line PQ. Consider the orresponding tangent AS to Ω, with S P BC. Then S and A

orrespond to eah other in △ABC „ △HPQ, and therefore =OSM “ =OAT “ =OAM .

Hene quadrilateral SAOM is yli, and sine the tangent line AS is perpendiular to AO,

=OMS “ 1800 ´ =OAS “ 900
. This means that M is the orthogonal projetion of O onto

BC, whih is its midpoint. So T lies on median AM of triangle ABC.
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G4.

In triangle ABC, let ω be the exirle opposite A. Let D, E, and F be the points

where ω is tangent to lines BC, CA, and AB, respetively. The irle AEF intersets line BC

at P and Q. Let M be the midpoint of AD. Prove that the irle MPQ is tangent to ω.

(Denmark)

Solution 1. Denote by Ω the irle AEFPQ, and denote by γ the irle PQM . Let the line

AD meet ω again at T ‰ D. We will show that γ is tangent to ω at T .

We �rst prove that points P,Q,M, T are onyli. Let A1
be the enter of ω. Sine

A1E K AE and A1F K AF , AA1
is a diameter in Ω. Let N be the midpoint of DT ; from

A1D “ A1T we an see that =A1NA “ 900
and therefore N also lies on the irle Ω. Now, from

the power of D with respet to the irles γ and Ω we get

DP ¨ DQ “ DA ¨ DN “ 2DM ¨ DT

2
“ DM ¨ DT,

so P,Q,M, T are onyli.

If EF ‖ BC, then ABC is isoseles and the problem is now immediate by symmetry.

Otherwise, let the tangent line to ω at T meet line BC at point R. The tangent line segments

RD and RT have the same length, so A1R is the perpendiular bisetor ofDT ; sine ND “ NT ,

N lies on this perpendiular bisetor.

In right triangle A1RD, RD2 “ RN ¨RA1 “ RP ¨RQ, in whih the last equality was obtained

from the power of R with respet to Ω. Hene RT 2 “ RP ¨ RQ, whih implies that RT is also

tangent to γ. Beause RT is a ommon tangent to ω and γ, these two irles are tangent at T .

Ω

A

P B D

M

Q

A′

N

T

F

C

ω

E

γ

R

Solution 2. After proving that P,Q,M, T are onyli, we �nish the problem in a di�erent

fashion. We only onsider the ase in whih EF and BC are not parallel. Let lines PQ and

EF meet at point R. Sine PQ and EF are radial axes of Ω, γ and ω, γ, respetively, R is the

radial enter of these three irles.

With respet to the irle ω, the line DR is the polar of D, and the line EF is the polar

of A. So the pole of line ADT is DR X EF “ R, and therefore RT is tangent to ω.

Finally, sine T belongs to γ and ω and R is the radial enter of γ, ω and Ω, line RT is

the radial axis of γ and ω, and sine it is tangent to ω, it is also tangent to γ. Beause RT is

a ommon tangent to ω and γ, these two irles are tangent at T .

Comment. In Solution 2 we de�ned the point R from Solution 1 in a di�erent way.
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Solution 3. We give an alternative proof that the irles are tangent at the ommon point T .

Again, we start from the fat that P,Q,M, T are onyli. Let point O be the midpoint of

diameter AA1
. Then MO is the midline of triangle ADA1

, so MO ‖ A1D. Sine A1D K PQ,

MO is perpendiular to PQ as well.

Looking at irle Ω, whih has enter O, MO K PQ implies that MO is the perpendiular

bisetor of the hord PQ. Thus M is the midpoint of ar

ŊPQ from γ, and the tangent line m

to γ at M is parallel to PQ.

Ω

A

P B D

M

Q

A′

N

T

F

E

C

ω

m

γ

O

Consider the homothety with enter T and ratio

TD
TM

. It takes D to M , and the line PQ

to the line m. Sine the irle that is tangent to a line at a given point and that goes through

another given point is unique, this homothety also takes ω (tangent to PQ and going through T )

to γ (tangent to m and going through T ). We onlude that ω and γ are tangent at T .
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G5.

Let ABCC1B1A1 be a onvex hexagon suh that AB “ BC, and suppose that the line

segments AA1, BB1, and CC1 have the same perpendiular bisetor. Let the diagonals AC1

and A1C meet at D, and denote by ω the irle ABC. Let ω interset the irle A1BC1 again

at E ‰ B. Prove that the lines BB1 and DE interset on ω.

(Ukraine)

Solution 1. If AA1 “ CC1, then the hexagon is symmetri about the line BB1; in par-

tiular the irles ABC and A1BC1 are tangent to eah other. So AA1 and CC1 must be

di�erent. Sine the points A and A1 an be interhanged with C and C1, respetively, we may

assume AA1 ă CC1.

Let R be the radial enter of the irles AEBC and A1EBC1, and the irumirle of the

symmetri trapezoid ACC1A1; that is the ommon point of the pairwise radial axes AC, A1C1,

and BE. By the symmetry of AC and A1C1, the point R lies on the ommon perpendiular

bisetor of AA1 and CC1, whih is the external bisetor of =ADC.

Let F be the seond intersetion of the line DR and the irle ACD. From the power of

R with respet to the irles ω and ACFD we have RB ¨ RE “ RA ¨ RC “ RD ¨ DF , so the

points B,E,D and F are onyli.

The line RDF is the external bisetor of =ADC, so the point F bisets the ar

ŔCDA.

By AB “ BC, on irle ω, the point B is the midpoint of ar

ŐAEC; let M be the point

diametrially opposite to B, that is the midpoint of the opposite ar

ŊCA of ω. Notie that the

points B, F and M lie on the perpendiular bisetor of AC, so they are ollinear.

R

B1

C1C

B

E

A

ω

A1

F

D

M

X

Finally, letX be the seond intersetion point of ω and the lineDE. Sine BM is a diameter

in ω, we have =BXM “ 900
. Moreover,

=EXM “ 1800 ´ =MBE “ 1800 ´ =FBE “ =EDF,

so MX and FD are parallel. Sine BX is perpendiular to MX and BB1 is perpendiular

to FD, this shows that X lies on line BB1.
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Solution 2. De�ne point M as the point opposite to B on irle ω, and point R as the

intersetion of lines AC, A1C1 and BE, and show that R lies on the external bisetor of

=ADC , like in the �rst solution.

Sine B is the midpoint of the ar

ŐAEC, the line BER is the external bisetor of =CEA.

Now we show that the internal angle bisetors of =ADC and =CEA meet on the segment AC.

Let the angle bisetor of =ADC meet AC at S, and let the angle bisetor of =CEA, whih is

line EM , meet AC at S 1
. By applying the angle bisetor theorem to both internal and external

bisetors of =ADC and =CEA,

AS : CS “ AD : CD “ AR : CR “ AE : CE “ AS 1 : CS 1,

so indeed S “ S 1
.

By =RDS “ =SER “ 900
the points R, S, D and E are onyli.

B1

C1

D

M

C

R

A1
A

E

B

X

ω

S = S ′

Now let the linesBB1 andDE meet at pointX . Notie that =EXB “ =EDS beause both

BB1 and DS are perpendiular to the line DR, we have that =EDS “ =ERS in irle SRDE,

and =ERS “ =EMB beause SR K BM and ER K ME. Therefore, =EXB “ =EMB, so

indeed, the point X lies on ω.
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G6.

Let n ě 3 be an integer. Two regular n-gons A and B are given in the plane. Prove

that the verties of A that lie inside B or on its boundary are onseutive.

(That is, prove that there exists a line separating those verties of A that lie inside B or on

its boundary from the other verties of A.)

(Czeh Republi)

Solution 1. In both solutions, by a polygon we always mean its interior together with its

boundary.

We start with �nding a regular n-gon C whih piq is insribed into B (that is, all verties

of C lie on the perimeter of B); and piiq is either a translation of A, or a homotheti image of A
with a positive fator.

Suh a polygon may be onstruted as follows. Let OA and OB be the enters of A and B,
respetively, and let A be an arbitrary vertex of A. Let

ÝÝÝÑ
OBC be the vetor o-diretional

to

ÝÝÝÑ
OAA, with C lying on the perimeter of B. The rotations of C around OB by multiples

of 2π{n form the required polygon. Indeed, it is regular, insribed into B (due to the rotational

symmetry of B), and �nally the translation/homothety mapping

ÝÝÝÑ
OAA to

ÝÝÝÑ
OBC maps A to C.

Now we separate two ases.

A

C

OA

OB

B

A

C

C1

C2

C3

A1

A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2
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Constrution of C Case 1: Translation

Case 1: C is a translation of A by a vetor ~v.

Denote by t the translation transform by vetor ~v. We need to prove that the verties of C
whih stay in B under t are onseutive. To visualize the argument, we refer the plane to Carte-

sian oordinates so that the x-axis is o-diretional with ~v. This way, the notions of right/left

and top/bottom are also introdued, aording to the x- and y-oordinates, respetively.

Let BT and BB be the top and the bottom verties of B (if several verties are extremal, we

take the rightmost of them). They split the perimeter of B into the right part BR and the left

part BL (the verties BT and BB are assumed to lie in both parts); eah part forms a onneted

subset of the perimeter of B. So the verties of C are also split into two parts CL Ă BL and

CR Ă BR, eah of whih onsists of onseutive verties.

Now, all the points in BR (and hene in CR) move out from B under t, sine they are

the rightmost points of B on the orresponding horizontal lines. It remains to prove that the

verties of CL whih stay in B under t are onseutive.

For this purpose, let C1, C2, and C3 be three verties in CL suh that C2 is between C1

and C3, and tpC1q and tpC3q lie in B; we need to prove that tpC2q P B as well. Let Ai “ tpCiq.
The line through C2 parallel to ~v rosses the segment C1C3 to the right of C2; this means that

this line rosses A1A3 to the right of A2, so A2 lies inside the triangle A1C2A3 whih is ontained

in B. This yields the desired result.

Case 2: C is a homotheti image of A entered at X with fator k ą 0.
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Denote by h the homothety mapping C to A. We need now to prove that the verties of C
whih stay in B after applying h are onseutive. If X P B, the laim is easy. Indeed, if k ă 1,

then the verties of A lie on the segments of the form XC (C being a vertex of C) whih lie

in B. If k ą 1, then the verties of A lie on the extensions of suh segments XC beyond C,

and almost all these extensions lie outside B. The exeptions may our only in ase when X

lies on the boundary of B, and they may ause one or two verties of A stay on the boundary

of B. But even in this ase those verties are still onseutive.

So, from now on we assume that X R B.

Now, there are two verties BT and BB of B suh that B is ontained in the angle =BTXBB;

if there are several options, say, for BT, then we hoose the farthest one fromX if k ą 1, and the

nearest one if k ă 1. For the visualization purposes, we refer the plane to Cartesian oordinates

so that the y-axis is o-diretional with
ÝÝÝÝÑ
BBBT, and X lies to the left of the line BTBB. Again,

the perimeter of B is split by BT and BB into the right part BR and the left part BL, and the

set of verties of C is split into two subsets CR Ă BR and CL Ă BL.

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
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Case 2, X inside B Subase 2.1: k ą 1

Subase 2.1: k ą 1.

In this subase, all points from BR (and hene from CR) move out from B under h, beause

they are the farthest points of B on the orresponding rays emanated from X . It remains to

prove that the verties of CL whih stay in B under h are onseutive.

Again, let C1, C2, C3 be three verties in CL suh that C2 is between C1 and C3, and hpC1q
and hpC3q lie in B. Let Ai “ hpCiq. Then the ray XC2 rosses the segment C1C3 beyond C2,

so this ray rosses A1A3 beyond A2; this implies that A2 lies in the triangle A1C2A3, whih is

ontained in B.
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Subase 2.2: k ă 1

Subase 2.2: k ă 1.

This ase is ompletely similar to the previous one. All points from BL (and hene from CL
move out from B under h, beause they are the nearest points of B on the orresponding
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rays emanated from X . Assume that C1, C2, and C3 are three verties in CR suh that C2

lies between C1 and C3, and hpC1q and hpC3q lie in B; let Ai “ hpCiq. Then A2 lies on

the segment XC2, and the segments XA2 and A1A3 ross eah other. Thus A2 lies in the

triangle A1C2A3, whih is ontained in B.

Comment 1. In fat, Case 1 an be redued to Case 2 via the following argument.

Assume that A and C are ongruent. Apply to A a homothety entered at OB with a fator slightly

smaller than 1 to obtain a polygon A1
. With appropriately hosen fator, the verties of A whih were

outside/inside B stay outside/inside it, so it su�es to prove our laim for A1
instead of A. And now,

the polygon A1
is a homotheti image of C, so the arguments from Case 2 apply.

Comment 2. After the polygon C has been found, the rest of the solution uses only the onvexity of

the polygons, instead of regularity. Thus, it proves a more general statement:

Assume that A, B, and C are three onvex polygons in the plane suh that C is insribed into B,
and A an be obtained from it via either translation or positive homothety. Then the verties of A that

lie inside B or on its boundary are onseutive.

Solution 2. Let OA and OB be the enters ofA and B, respetively. Denote rns “ t1, 2, . . . , nu.
We start with introduing appropriate enumerations and notations. Enumerate the sidelines

of B lokwise as ℓ1, ℓ2, . . . , ℓn. Denote by Hi the half-plane of ℓi that ontains B (Hi is assumed

to ontain ℓi); by Bi the midpoint of the side belonging to ℓi; and �nally denote

ÝÑ
bi “ ÝÝÝÑ

BiOB.

(As usual, the numbering is yli modulo n, so ℓn`i “ ℓi et.)

Now, hoose a vertex A1 of A suh that the vetor

ÝÝÝÑ
OAA1 points �mostly outside H1�;

stritly speaking, this means that the salar produt xÝÝÝÑ
OAA1,

ÝÑ
b1y is minimal. Starting from A1,

enumerate the verties of A lokwise as A1, A2, . . . , An; by the rotational symmetry, the hoie

of A1 yields that the vetor

ÝÝÝÑ
OAAi points �mostly outside Hi�, i.e.,

xÝÝÝÑ
OAAi,

ÝÑ
bi y “ min

jPrns
xÝÝÝÑ
OAAj,

ÝÑ
bi y. (1)

An

A1 A2

A3Bn

B1 B2

B3

ℓ1

ℓ2

ℓ3

−→
bn

−→
b1

−→
b2

−→
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Enumerations and notations

We intend to reformulate the problem in more ombinatorial terms, for whih purpose we

introdue the following notion. Say that a subset I Ď rns is onneted if the elements of this

set are onseutive in the yli order (in other words, if we join eah i with i`1 mod n by an

edge, this subset is onneted in the usual graph sense). Clearly, the union of two onneted

subsets sharing at least one element is onneted too. Next, for any half-plane H the indies

of verties of, say, A that lie in H form a onneted set.

To aess the problem, we denote

M “ tj P rns : Aj R Bu, Mi “ tj P rns : Aj R Hiu for i P rns.
We need to prove that rns z M is onneted, whih is equivalent to M being onneted. On

the other hand, sine B “ Ş
iPrns Hi, we have M “ Ť

iPrns Mi, where the sets Mi are easier to

investigate. We will utilize the following properties of these sets; the �rst one holds by the

de�nition of Mi, along with the above remark.
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The sets Mi

Property 1: Eah set Mi is onneted. l

Property 2: If Mi is nonempty, then i P Mi.

Proof. Indeed, we have

j P Mi ðñ Aj R Hi ðñ xÝÝÝÑ
BiAj ,

ÝÑ
bi y ă 0 ðñ xÝÝÝÑ

OAAj ,
ÝÑ
bi y ă xÝÝÝÑ

OABi,
ÝÑ
bi y. (2)

The right-hand part of the last inequality does not depend on j. Therefore, if some j lies in Mi,

then by (1) so does i. l

In view of Property 2, it is useful to de�ne the set

M 1 “ ti P rns : i P Miu “ ti P rns : Mi ‰ ∅u.

Property 3: The set M 1
is onneted.

Proof. To prove this property, we proeed on with the investigation started in (2) to write

i P M 1 ðñ Ai P Mi ðñ xÝÝÝÑ
BiAi,

ÝÑ
bi y ă 0 ðñ xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă xÝÝÝÑ

OBBi,
ÝÑ
bi y ` xÝÝÝÑ

AiOA,
ÝÑ
bi y.

The right-hand part of the obtained inequality does not depend on i, due to the rotational

symmetry; denote its onstant value by µ. Thus, i P M 1
if and only if xÝÝÝÝÑ

OBOA,
ÝÑ
bi y ă µ. This

ondition is in turn equivalent to the fat that Bi lies in a ertain (open) half-plane whose

boundary line is orthogonal to OBOA; thus, it de�nes a onneted set. l

Now we an �nish the solution. Sine M 1 Ď M , we have

M “
ď

iPrns

Mi “ M 1 Y
ď

iPrns

Mi,

so M an be obtained from M 1
by adding all the sets Mi one by one. All these sets are

onneted, and eah nonempty Mi ontains an element of M 1
(namely, i). Thus their union is

also onneted.

Comment 3. Here we present a way in whih one an ome up with a solution like the one above.

Assume, for sake of simpliity, that OA lies inside B. Let us �rst put onto the plane a very small

regular n-gon A1
entered at OA and aligned with A; all its verties lie inside B. Now we start blowing

it up, looking at the order in whih the verties leave B. To go out of B, a vertex should ross a ertain

side of B (whih is hard to desribe), or, equivalently, to ross at least one sideline of B � and this

event is easier to desribe. Indeed, the �rst vertex of A1
to ross ℓi is the vertex A1

i (orresponding to Ai

in A); more generally, the verties A1
j ross ℓi in suh an order that the salar produt xÝÝÝÑ

OAAj ,
ÝÑ
bi y does

not inrease. For di�erent indies i, these orders are just yli shifts of eah other; and this provides

some intuition for the notions and laims from Solution 2.
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G7.

A onvex quadrilateral ABCD has an insribed irle with enter I. Let Ia, Ib, Ic,

and Id be the inenters of the triangles DAB, ABC, BCD, and CDA, respetively. Suppose

that the ommon external tangents of the irles AIbId and CIbId meet at X , and the ommon

external tangents of the irles BIaIc and DIaIc meet at Y . Prove that =XIY “ 900
.

(Kazakhstan)

Solution. Denote by ωa, ωb, ωc and ωd the irles AIbId, BIaIc, CIbId, and DIaIc, let their

enters be Oa, Ob, Oc and Od, and let their radii be ra, rb, rc and rd, respetively.

Claim 1. IbId K AC and IaIc K BD.

Proof. Let the inirles of triangles ABC and ACD be tangent to the line AC at T and T 1
,

respetively. (See the �gure to the left.) We have AT “ AB`AC´BC
2

in triangle ABC, AT 1 “
AD`AC´CD

2
in triangle ACD, and AB ´ BC “ AD ´ CD in quadrilateral ABCD, so

AT “ AC ` AB ´ BC

2
“ AC ` AD ´ CD

2
“ AT 1.

This shows T “ T 1
. As an immediate onsequene, IbId K AC.

The seond statement an be shown analogously. l

TA C

B

Ib

T ′

Id

D D

I

Id

A C

Ib

B

ωa

T
Oa

Claim 2. The points Oa, Ob, Oc and Od lie on the lines AI, BI, CI and DI, respetively.

Proof. By symmetry it su�es to prove the laim for Oa. (See the �gure to the right above.)

Notie �rst that the inirles of triangles ABC and ACD an be obtained from the inirle of

the quadrilateral ABCD with homothety enters B and D, respetively, and homothety fators

less than 1, therefore the points Ib and Id lie on the line segments BI and DI, respetively.

As is well-known, in every triangle the altitude and the diameter of the irumirle starting

from the same vertex are symmetri about the angle bisetor. By Claim 1, in triangle AIdIb,

the segment AT is the altitude starting from A. Sine the foot T lies inside the segment

IbId, the irumenter Oa of triangle AIdIb lies in the angle domain IbAId in suh a way that

=IbAT “ =OaAId. The points Ib and Id are the inenters of triangles ABC and ACD, so the

lines AIb and AId biset the angles =BAC and =CAD, respetively. Then

=OaAD “ =OaAId ` =IdAD “ =IbAT ` =IdAD “ 1

2
=BAC ` 1

2
=CAD “ 1

2
=BAD,

so Oa lies on the angle bisetor of =BAD, that is, on line AI. l

The point X is the external similitude enter of ωa and ωc; let U be their internal similitude

enter. The points Oa and Oc lie on the perpendiular bisetor of the ommon hord IbId of ωa

and ωc, and the two similitude enters X and U lie on the same line; by Claim 2, that line is

parallel to AC.
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From the similarity of the irles ωa and ωc, from OaIb “ OaId “ OaA “ ra and OcIb “
OcId “ OcC “ rc, and from AC ‖ OaOc we an see that

OaX

OcX
“ OaU

OcU
“ ra

rc
“ OaIb

OcIb
“ OaId

OcId
“ OaA

OcC
“ OaI

OcI
.

So the points X,U, Ib, Id, I lie on the Apollonius irle of the points Oa, Oc with ratio ra : rc. In

this Apollonius irle XU is a diameter, and the lines IU and IX are respetively the internal

and external bisetors of =OaIOc “ =AIC, aording to the angle bisetor theorem. Moreover,

in the Apollonius irle the diameter UX is the perpendiular bisetor of IbId, so the lines IX

and IU are the internal and external bisetors of =IbIId “ =BID, respetively.

Repeating the same argument for the points B,D instead of A,C, we get that the line IY is

the internal bisetor of =AIC and the external bisetor of =BID. Therefore, the lines IX and

IY respetively are the internal and external bisetors of =BID, so they are perpendiular.

Comment. In fat the points Oa, Ob, Oc and Od lie on the line segments AI, BI, CI and DI,

respetively. For the point Oa this an be shown for example by =IdOaA ` =AOaIb “ p1800 ´
2=OaAIdq`p1800 ´2=IbAOaq “ 360˝ ´=BAD “ =ADI`=DIA`=AIB`=IBA ą =IdIA`=AIIb.

The solution also shows that the line IY passes through the point U , and analogously, IX passes

through the internal similitude enter of ωb and ωd.

http://mathworld.wolfram.com/ApolloniusCircle.html
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G8.

There are 2017 mutually external irles drawn on a blakboard, suh that no two are

tangent and no three share a ommon tangent. A tangent segment is a line segment that is

a ommon tangent to two irles, starting at one tangent point and ending at the other one.

Luiano is drawing tangent segments on the blakboard, one at a time, so that no tangent

segment intersets any other irles or previously drawn tangent segments. Luiano keeps

drawing tangent segments until no more an be drawn. Find all possible numbers of tangent

segments when he stops drawing.

(Australia)

Answer: If there were n irles, there would always be exatly 3pn ´ 1q segments; so the only

possible answer is 3 ¨ 2017 ´ 3 “ 6048.

Solution 1. First, onsider a partiular arrangement of irles C1, C2, . . . , Cn where all the

enters are aligned and eah Ci is elipsed from the other irles by its neighbors � for example,

taking Ci with enter pi2, 0q and radius i{2 works. Then the only tangent segments that an

be drawn are between adjaent irles Ci and Ci`1, and exatly three segments an be drawn

for eah pair. So Luiano will draw exatly 3pn ´ 1q segments in this ase.

C3
C4 C5

C2C1

For the general ase, start from a �nal on�guration (that is, an arrangement of irles

and segments in whih no further segments an be drawn). The idea of the solution is to

ontinuously resize and move the irles around the plane, one by one (in partiular, making

sure we never have 4 irles with a ommon tangent line), and show that the number of segments

drawn remains onstant as the piture hanges. This way, we an redue any irle/segment

on�guration to the partiular one mentioned above, and the �nal number of segments must

remain at 3n ´ 3.

Some preliminary onsiderations: look at all possible tangent segments joining any two

irles. A segment that is tangent to a irle A an do so in two possible orientations � it

may ome out of A in lokwise or ounterlokwise orientation. Two segments touhing the

same irle with the same orientation will never interset eah other. Eah pair pA,Bq of irles
has 4 hoies of tangent segments, whih an be identi�ed by their orientations � for example,

pA`, B´q would be the segment whih omes out of A in lokwise orientation and omes out of

B in ounterlokwise orientation. In total, we have 2npn ´ 1q possible segments, disregarding

intersetions.

Now we pik a irle C and start to ontinuously move and resize it, maintaining all existing

tangent segments aording to their identi�ations, inluding those involving C. We an keep

our hoie of tangent segments until the on�guration reahes a transition. We lose nothing if

we assume that C is kept at least ε units away from any other irle, where ε is a positive, �xed

onstant; therefore at a transition either: (1) a urrently drawn tangent segment t suddenly

beomes obstruted; or (2) a urrently absent tangent segment t suddenly beomes unobstruted

and available.

Claim. A transition an only our when three irles C1, C2, C3 are tangent to a ommon line ℓ

ontaining t, in a way suh that the three tangent segments lying on ℓ (joining the three irles

pairwise) are not obstruted by any other irles or tangent segments (other than C1, C2, C3).

Proof. Sine (2) is e�etively the reverse of (1), it su�es to prove the laim for (1). Suppose t

has suddenly beome obstruted, and let us onsider two ases.
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Case 1: t beomes obstruted by a irle

t

Ø

t

Ø

t

Then the new irle beomes the third irle tangent to ℓ, and no other irles or tangent

segments are obstruting t.

Case 2: t beomes obstruted by another tangent segment t1

When two segments t and t1
�rst interset eah other, they must do so at a vertex of one of

them. But if a vertex of t1
�rst rossed an interior point of t, the irle assoiated to this vertex

was already bloking t (absurd), or is about to (we already took are of this in ase 1). So we

only have to analyze the possibility of t and t1
suddenly having a ommon vertex. However,

if that happens, this vertex must belong to a single irle (remember we are keeping di�erent

irles at least ε units apart from eah other throughout the moving/resizing proess), and

therefore they must have di�erent orientations with respet to that irle.

t

t′

Ø
t

t′

Ø

t

t′

Thus, at the transition moment, both t and t1
are tangent to the same irle at a ommon

point, that is, they must be on the same line ℓ and hene we again have three irles simultane-

ously tangent to ℓ. Also no other irles or tangent segments are obstruting t or t1
(otherwise,

they would have disappeared before this transition). l

Next, we fous on the maximality of a on�guration immediately before and after a tran-

sition, where three irles share a ommon tangent line ℓ. Let the three irles be C1, C2, C3,

ordered by their tangent points. The only possibly a�eted segments are the ones lying on

ℓ, namely t12, t23 and t13. Sine C2 is in the middle, t12 and t23 must have di�erent orienta-

tions with respet to C2. For C1, t12 and t13 must have the same orientation, while for C3, t13
and t23 must have the same orientation. The �gure below summarizes the situation, showing

alternative positions for C1 (namely, C1 and C 1
1
) and for C3 (C3 and C 1

3
).

C3

C ′
3

t12 t23

C1

C ′
1

C2
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Now perturb the diagram slightly so the three irles no longer have a ommon tangent,

while preserving the de�nition of t12, t23 and t13 aording to their identi�ations. First note

that no other irles or tangent segments an obstrut any of these segments. Also reall that

tangent segments joining the same irle at the same orientation will never obstrut eah other.

The availability of the tangent segments an now be heked using simple diagrams.

Case 1: t13 passes through C2

C2

C3

C ′
3

t13

t23t12

C1

C ′
1

In this ase, t13 is not available, but both t12 and t23 are.

Case 2: t13 does not pass through C2

C ′
1

t12
t23

t13

C1

C ′
3

C2

C3

Now t13 is available, but t12 and t23 obstrut eah other, so only one an be drawn.

In any ase, exatly 2 out of these 3 segments an be drawn. Thus the maximal number of

segments remains onstant as we move or resize the irles, and we are done.

Solution 2. First note that all tangent segments lying on the boundary of the onvex hull of

the irles are always drawn sine they do not interset anything else. Now in the �nal piture,

aside from the n irles, the blakboard is divided into regions. We an onsider the piture

as a plane (multi-)graph G in whih the irles are the verties and the tangent segments are

the edges. The idea of this solution is to �nd a relation between the number of edges and the

number of regions in G; then, one we prove that G is onneted, we an use Euler's formula

to �nish the problem.

The boundary of eah region onsists of 1 or more (for now) simple losed urves, eah

made of ars and tangent segments. The segment and the ar might meet smoothly (as in Si,

i “ 1, 2, . . . , 6 in the �gure below) or not (as in P1, P2, P3, P4; all suh points sharp orners of

the boundary). In other words, if a person walks along the border, her diretion would suddenly

turn an angle of π at a sharp orner.
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S4

S6

P1

P4

S5

P3

S1

P2

S3

S2

Claim 1. The outer boundary B1 of any internal region has at least 3 sharp orners.

Proof. Let a person walk one lap along B1 in the ounterlokwise orientation. As she does

so, she will turn lokwise as she moves along the irle ars, and not turn at all when moving

along the lines. On the other hand, her total rotation after one lap is 2π in the ounterlokwise

diretion! Where ould she be turning ounterlokwise? She an only do so at sharp orners,

and, even then, she turns only an angle of π there. But two sharp orners are not enough, sine

at least one ar must be present�so she must have gone through at least 3 sharp orners. l

Claim 2. Eah internal region is simply onneted, that is, has only one boundary urve.

Proof. Suppose, by ontradition, that some region has an outer boundary B1 and inner boun-

daries B2, B3, . . . , Bm (m ě 2). Let P1 be one of the sharp orners of B1.

Now onsider a ar starting at P1 and traveling ounterlokwise along B1. It starts in

reverse, i.e., it is initially faing the orner P1. Due to the tangent onditions, the ar may travel

in a way so that its orientation only hanges when it is moving along an ar. In partiular, this

means the ar will sometimes travel forward. For example, if the ar approahes a sharp orner

when driving in reverse, it would ontinue travel forward after the orner, instead of making an

immediate half-turn. This way, the orientation of the ar only hanges in a lokwise diretion

sine the ar always travels lokwise around eah ar.

Now imagine there is a laser pointer at the front of the ar, pointing diretly ahead. Initially,

the laser endpoint hits P1, but, as soon as the ar hits an ar, the endpoint moves lokwise

around B1. In fat, the laser endpoint must move ontinuously along B1! Indeed, if the

endpoint ever jumped (within B1, or from B1 to one of the inner boundaries), at the moment

of the jump the interrupted laser would be a drawable tangent segment that Luiano missed

(see �gure below for an example).

P1

P3

P2

Car

Laser
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Now, let P2 and P3 be the next two sharp orners the ar goes through, after P1 (the

previous lemma assures their existene). At P2 the ar starts moving forward, and at P3 it will

start to move in reverse again. So, at P3, the laser endpoint is at P3 itself. So while the ar

moved ounterlokwise between P1 and P3, the laser endpoint moved lokwise between P1

and P3. That means the laser beam itself sanned the whole region within B1, and it should

have rossed some of the inner boundaries. l

Claim 3. Eah region has exatly 3 sharp orners.

Proof. Consider again the ar of the previous laim, with its laser still �rmly attahed to its

front, traveling the same way as before and going through the same onseutive sharp orners

P1, P2 and P3. As we have seen, as the ar goes ounterlokwise from P1 to P3, the laser

endpoint goes lokwise from P1 to P3, so together they over the whole boundary. If there

were a fourth sharp orner P4, at some moment the laser endpoint would pass through it. But,

sine P4 is a sharp orner, this means the ar must be on the extension of a tangent segment

going through P4. Sine the ar is not on that segment itself (the ar never goes through P4),

we would have 3 irles with a ommon tangent line, whih is not allowed.

P4

P1

P2

P3

Laser Car

l

We are now ready to �nish the solution. Let r be the number of internal regions, and s be the

number of tangent segments. Sine eah tangent segment ontributes exatly 2 sharp orners

to the diagram, and eah region has exatly 3 sharp orners, we must have 2s “ 3r. Sine the

graph orresponding to the diagram is onneted, we an use Euler's formula n´ s` r “ 1 and

�nd s “ 3n ´ 3 and r “ 2n ´ 2.
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Number Theory

N1.

The sequene a0, a1, a2, . . . of positive integers satis�es

an`1 “
#?

an, if

?
an is an integer

an ` 3, otherwise

for every n ě 0.

Determine all values of a0 ą 1 for whih there is at least one number a suh that an “ a for

in�nitely many values of n.

(South Afria)

Answer: All positive multiples of 3.

Solution. Sine the value of an`1 only depends on the value of an, if an “ am for two di�erent

indies n and m, then the sequene is eventually periodi. So we look for the values of a0 for

whih the sequene is eventually periodi.

Claim 1. If an ” ´1 pmod 3q, then, for all m ą n, am is not a perfet square. It follows that

the sequene is eventually stritly inreasing, so it is not eventually periodi.

Proof. A square annot be ongruent to ´1 modulo 3, so an ” ´1 pmod 3q implies that an is

not a square, therefore an`1 “ an ` 3 ą an. As a onsequene, an`1 ” an ” ´1 pmod 3q, so
an`1 is not a square either. By repeating the argument, we prove that, from an on, all terms of

the sequene are not perfet squares and are greater than their predeessors, whih ompletes

the proof. l

Claim 2. If an ı ´1 pmod 3q and an ą 9 then there is an index m ą n suh that am ă an.

Proof. Let t2 be the largest perfet square whih is less than an. Sine an ą 9, t is at least

3. The �rst square in the sequene an, an ` 3, an ` 6, . . . will be pt ` 1q2, pt ` 2q2 or pt ` 3q2,
therefore there is an index m ą n suh that am ď t ` 3 ă t2 ă an, as laimed. l

Claim 3. If an ” 0 pmod 3q, then there is an index m ą n suh that am “ 3.

Proof. First we notie that, by the de�nition of the sequene, a multiple of 3 is always followed

by another multiple of 3. If an P t3, 6, 9u the sequene will eventually follow the periodi pattern

3, 6, 9, 3, 6, 9, . . . . If an ą 9, let j be an index suh that aj is equal to the minimum value of

the set tan`1, an`2, . . . u. We must have aj ď 9, otherwise we ould apply Claim 2 to aj and

get a ontradition on the minimality hypothesis. It follows that aj P t3, 6, 9u, and the proof is

omplete. l

Claim 4. If an ” 1 pmod 3q, then there is an index m ą n suh that am ” ´1 pmod 3q.
Proof. In the sequene, 4 is always followed by 2 ” ´1 pmod 3q, so the laim is true for an “ 4.

If an “ 7, the next terms will be 10, 13, 16, 4, 2, . . . and the laim is also true. For an ě 10, we

again take an index j ą n suh that aj is equal to the minimum value of the set tan`1, an`2, . . . u,
whih by the de�nition of the sequene onsists of non-multiples of 3. Suppose aj ” 1 pmod 3q.
Then we must have aj ď 9 by Claim 2 and the minimality of aj . It follows that aj P t4, 7u,
so am “ 2 ă aj for some m ą j, ontraditing the minimality of aj . Therefore, we must have

aj ” ´1 pmod 3q. l

It follows from the previous laims that if a0 is a multiple of 3 the sequene will eventually

reah the periodi pattern 3, 6, 9, 3, 6, 9, . . . ; if a0 ” ´1 pmod 3q the sequene will be stritly

inreasing; and if a0 ” 1 pmod 3q the sequene will be eventually stritly inreasing.

So the sequene will be eventually periodi if, and only if, a0 is a multiple of 3.
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N2.

Let p ě 2 be a prime number. Eduardo and Fernando play the following game making

moves alternately: in eah move, the urrent player hooses an index i in the set t0, 1, . . . , p´1u
that was not hosen before by either of the two players and then hooses an element ai of the

set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u. Eduardo has the �rst move. The game ends after all the indies

i P t0, 1, . . . , p ´ 1u have been hosen. Then the following number is omputed:

M “ a0 ` 10 ¨ a1 ` ¨ ¨ ¨ ` 10p´1 ¨ ap´1 “
p´1ÿ

j“0

aj ¨ 10j .

The goal of Eduardo is to make the number M divisible by p, and the goal of Fernando is to

prevent this.

Prove that Eduardo has a winning strategy.

(Moroo)

Solution. We say that a player makes the move pi, aiq if he hooses the index i and then the

element ai of the set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u in this move.

If p “ 2 or p “ 5 then Eduardo hooses i “ 0 and a0 “ 0 in the �rst move, and wins, sine,

independently of the next moves, M will be a multiple of 10.

Now assume that the prime number p does not belong to t2, 5u. Eduardo hooses i “ p´ 1

and ap´1 “ 0 in the �rst move. By Fermat's Little Theorem, p10pp´1q{2q2 “ 10p´1 ” 1 pmod pq,
so p | p10pp´1q{2q2 ´ 1 “ p10pp´1q{2 ` 1qp10pp´1q{2 ´ 1q. Sine p is prime, either p | 10pp´1q{2 ` 1 or

p | 10pp´1q{2 ´ 1. Thus we have two ases:

Case a: 10pp´1q{2 ” ´1 pmod pq
In this ase, for eah move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi` p´1

2
, aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi´ p´1

2
, aiq, if p´1

2
ď i ď p´2. We will have 10j ” ´10i

pmod pq, and so aj ¨ 10j “ ai ¨ 10j ” ´ai ¨ 10i pmod pq. Notie that this move by Eduardo

is always possible. Indeed, immediately before a move by Fernando, for any set of the type

tr, r ` pp ´ 1q{2u with 0 ď r ď pp ´ 3q{2, either no element of this set was hosen as an index

by the players in the previous moves or else both elements of this set were hosen as indies by

the players in the previous moves. Therefore, after eah of his moves, Eduardo always makes

the sum of the numbers ak ¨ 10k orresponding to the already hosen pairs pk, akq divisible by

p, and thus wins the game.

Case b: 10pp´1q{2 ” 1 pmod pq
In this ase, for eah move pi, aiq of Fernando, Eduardo immediately makes the move pj, ajq “

pi ` p´1

2
, 9 ´ aiq, if 0 ď i ď p´3

2
, or pj, ajq “ pi ´ p´1

2
, 9 ´ aiq, if p´1

2
ď i ď p ´ 2. The same

argument as above shows that Eduardo an always make suh move. We will have 10j ” 10i

pmod pq, and so aj ¨ 10j ` ai ¨ 10i ” pai ` ajq ¨ 10i “ 9 ¨ 10i pmod pq. Therefore, at the end of

the game, the sum of all terms ak ¨ 10k will be ongruent to
p´3

2ÿ

i“0

9 ¨ 10i “ 10pp´1q{2 ´ 1 ” 0 pmod pq,

and Eduardo wins the game.
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N3.

Determine all integers n ě 2 with the following property: for any integers a1, a2, . . . , an
whose sum is not divisible by n, there exists an index 1 ď i ď n suh that none of the numbers

ai, ai ` ai`1, . . . , ai ` ai`1 ` ¨ ¨ ¨ ` ai`n´1

is divisible by n. (We let ai “ ai´n when i ą n.)

(Thailand)

Answer: These integers are exatly the prime numbers.

Solution. Let us �rst show that, if n “ ab, with a, b ě 2 integers, then the property in the

statement of the problem does not hold. Indeed, in this ase, let ak “ a for 1 ď k ď n ´ 1 and

an “ 0. The sum a1 ` a2 ` ¨ ¨ ¨ ` an “ a ¨ pn ´ 1q is not divisible by n. Let i with 1 ď i ď n be

an arbitrary index. Taking j “ b if 1 ď i ď n ´ b, and j “ b ` 1 if n ´ b ă i ď n, we have

ai ` ai`1 ` ¨ ¨ ¨ ` ai`j´1 “ a ¨ b “ n ” 0 pmod nq.

It follows that the given example is indeed a ounterexample to the property of the statement.

Now let n be a prime number. Suppose by ontradition that the property in the statement

of the problem does not hold. Then there are integers a1, a2, . . . , an whose sum is not divisible

by n suh that for eah i, 1 ď i ď n, there is j, 1 ď j ď n, for whih the number ai ` ai`1 `
¨ ¨ ¨ ` ai`j´1 is divisible by n. Notie that, in any suh ase, we should have 1 ď j ď n ´ 1,

sine a1 ` a2 ` ¨ ¨ ¨ ` an is not divisible by n. So we may onstrut reursively a �nite sequene

of integers 0 “ i0 ă i1 ă i2 ă ¨ ¨ ¨ ă in with is`1 ´ is ď n ´ 1 for 0 ď s ď n ´ 1 suh that, for

0 ď s ď n ´ 1,

ais`1 ` ais`2 ` ¨ ¨ ¨ ` ais`1
” 0 pmod nq

(where we take indies modulo n). Indeed, for 0 ď s ă n, we apply the previous observation

to i “ is ` 1 in order to de�ne is`1 “ is ` j.

In the sequene of n ` 1 indies i0, i1, i2, . . . , in, by the pigeonhole priniple, we have two

distint elements whih are ongruent modulo n. So there are indies r, s with 0 ď r ă s ď n

suh that is ” ir pmod nq and

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “
s´1ÿ

j“r

paij`1 ` aij`2 ` ¨ ¨ ¨ ` aij`1
q ” 0 pmod nq.

Sine is ” ir pmod nq, we have is ´ ir “ k ¨ n for some positive integer k, and, sine ij`1 ´ ij ď
n ´ 1 for 0 ď j ď n ´ 1, we have is ´ ir ď pn ´ 1q ¨ n, so k ď n ´ 1. But in this ase

air`1 ` air`2 ` ¨ ¨ ¨ ` ais “ k ¨ pa1 ` a2 ` ¨ ¨ ¨ ` anq

annot be a multiple of n, sine n is prime and neither k nor a1 ` a2 ` ¨ ¨ ¨ ` an is a multiple

of n. A ontradition.
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N4.

Call a rational number short if it has �nitely many digits in its deimal expansion.

For a positive integer m, we say that a positive integer t is m-tasti if there exists a number

c P t1, 2, 3, . . . , 2017u suh that

10t ´ 1

c ¨ m is short, and suh that

10k ´ 1

c ¨ m is not short for any

1 ď k ă t. Let Spmq be the set of m-tasti numbers. Consider Spmq for m “ 1, 2, . . .. What is

the maximum number of elements in Spmq?
(Turkey)

Answer: 807.

Solution. First notie that x P Q is short if and only if there are exponents a, b ě 0 suh that

2a ¨ 5b ¨ x P Z. In fat, if x is short, then x “ n
10k

for some k and we an take a “ b “ k; on the

other hand, if 2a ¨ 5b ¨ x “ q P Z then x “ 2b¨5aq
10a`b , so x is short.

If m “ 2a ¨ 5b ¨ s, with gcdps, 10q “ 1, then 10t´1

m
is short if and only if s divides 10t ´ 1. So

we may (and will) suppose without loss of generality that gcdpm, 10q “ 1. De�ne

C “ t1 ď c ď 2017: gcdpc, 10q “ 1u.

The m-tasti numbers are then preisely the smallest exponents t ą 0 suh that 10t ” 1

pmod cmq for some integer c P C, that is, the set of orders of 10 modulo cm. In other words,

Spmq “ tordcmp10q : c P Cu.

Sine there are 4 ¨ 201 ` 3 “ 807 numbers c with 1 ď c ď 2017 and gcdpc, 10q “ 1, namely

those suh that c ” 1, 3, 7, 9 pmod 10q,

|Spmq| ď |C| “ 807.

Now we �nd m suh that |Spmq| “ 807. Let

P “ t1 ă p ď 2017: p is prime, p ‰ 2, 5u

and hoose a positive integer α suh that every p P P divides 10α ´ 1 (e.g. α “ ϕpT q, T being

the produt of all primes in P ), and let m “ 10α ´ 1.

Claim. For every c P C, we have

ordcmp10q “ cα.

As an immediate onsequene, this implies |Spmq| “ |C| “ 807, �nishing the problem.

Proof. Obviously ordmp10q “ α. Let t “ ordcmp10q. Then

cm � 10t ´ 1 ùñ m � 10t ´ 1 ùñ α � t.

Hene t “ kα for some k P Zą0. We will show that k “ c.

Denote by νppnq the number of prime fators p in n, that is, the maximum exponent β for

whih pβ � n. For every ℓ ě 1 and p P P , the Lifting the Exponent Lemma provides

νpp10ℓα ´ 1q “ νppp10αqℓ ´ 1q “ νpp10α ´ 1q ` νppℓq “ νppmq ` νppℓq,

so

cm � 10kα ´ 1 ðñ @p P P ; νppcmq ď νpp10kα ´ 1q
ðñ @p P P ; νppmq ` νppcq ď νppmq ` νppkq
ðñ @p P P ; νppcq ď νppkq
ðñ c � k.

The �rst suh k is k “ c, so ordcmp10q “ cα. l
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Comment. The Lifting the Exponent Lemma states that, for any odd prime p, any integers a, b

oprime with p suh that p � a ´ b, and any positive integer exponent n,

νppan ´ bnq “ νppa ´ bq ` νppnq,

and, for p “ 2,
ν2pan ´ bnq “ ν2pa2 ´ b2q ` νppnq ´ 1.

Both laims an be proved by indution on n.
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N5.

Find all pairs pp, qq of prime numbers with p ą q for whih the number

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1

is an integer.

(Japan)

Answer: The only suh pair is p3, 2q.
Solution. Let M “ pp ` qqp´qpp ´ qqp`q ´ 1, whih is relatively prime with both p ` q and

p ´ q. Denote by pp ´ qq´1
the multipliative inverse of pp ´ qq modulo M .

By eliminating the term ´1 in the numerator,

pp ` qqp`qpp ´ qqp´q ´ 1 ” pp ` qqp´qpp ´ qqp`q ´ 1 pmod Mq
pp ` qq2q ” pp ´ qq2q pmod Mq (1)

´
pp ` qq ¨ pp ´ qq´1

¯2q

” 1 pmod Mq. (2)

Case 1: q ě 5.

Consider an arbitrary prime divisor r of M . Notie that M is odd, so r ě 3. By p2q, the
multipliative order of

´
pp ` qq ¨ pp ´ qq´1

¯
modulo r is a divisor of the exponent 2q in (2), so

it an be 1, 2, q or 2q.

By Fermat's theorem, the order divides r´1. So, if the order is q or 2q then r ” 1 pmod qq.
If the order is 1 or 2 then r | pp` qq2 ´ pp ´ qq2 “ 4pq, so r “ p or r “ q. The ase r “ p is not

possible, beause, by applying Fermat's theorem,

M “ pp` qqp´qpp´ qqp`q ´ 1 ” qp´qp´qqp`q ´ 1 “
`
q2
˘p ´ 1 ” q2 ´ 1 “ pq ` 1qpq ´ 1q pmod pq

and the last fators q ´ 1 and q ` 1 are less than p and thus p ∤ M . Hene, all prime divisors

of M are either q or of the form kq ` 1; it follows that all positive divisors of M are ongruent

to 0 or 1 modulo q.

Now notie that

M “
´

pp ` qq p´q

2 pp ´ qq p`q

2 ´ 1
¯´

pp ` qq p´q

2 pp ´ qq p`q

2 ` 1
¯

is the produt of two onseutive positive odd numbers; both should be ongruent to 0 or 1

modulo q. But this is impossible by the assumption q ě 5. So, there is no solution in Case 1.

Case 2: q “ 2.

By p1q, we have M | pp ` qq2q ´ pp ´ qq2q “ pp ` 2q4 ´ pp ´ 2q4, so

pp ` 2qp´2pp ´ 2qp`2 ´ 1 “ M ď pp ` 2q4 ´ pp ´ 2q4 ď pp ` 2q4 ´ 1,

pp ` 2qp´6pp ´ 2qp`2 ď 1.

If p ě 7 then the left-hand side is obviously greater than 1. For p “ 5 we have

pp ` 2qp´6pp ´ 2qp`2 “ 7´1 ¨ 37 whih is also too large.

There remains only one andidate, p “ 3, whih provides a solution:

pp ` qqp`qpp ´ qqp´q ´ 1

pp ` qqp´qpp ´ qqp`q ´ 1
“ 55 ¨ 11 ´ 1

51 ¨ 15 ´ 1
“ 3124

4
“ 781.

So in Case 2 the only solution is pp, qq “ p3, 2q.
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Case 3: q “ 3.

Similarly to Case 2, we have

M | pp ` qq2q ´ pp ´ qq2q “ 64 ¨
˜ˆ

p ` 3

2

˙6

´
ˆ
p ´ 3

2

˙6
¸

.

Sine M is odd, we onlude that

M |
ˆ
p ` 3

2

˙
6

´
ˆ
p ´ 3

2

˙
6

and

pp ` 3qp´3pp ´ 3qp`3 ´ 1 “ M ď
ˆ
p ` 3

2

˙
6

´
ˆ
p ´ 3

2

˙
6

ď
ˆ
p ` 3

2

˙
6

´ 1,

64pp ` 3qp´9pp ´ 3qp`3 ď 1.

If p ě 11 then the left-hand side is obviously greater than 1. If p “ 7 then the left-hand side is

64 ¨ 10´2 ¨ 410 ą 1. If p “ 5 then the left-hand side is 64 ¨ 8´4 ¨ 28 “ 22 ą 1. Therefore, there is

no solution in Case 3.
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N6.

Find the smallest positive integer n, or show that no suh n exists, with the following

property: there are in�nitely many distint n-tuples of positive rational numbers pa1, a2, . . . , anq
suh that both

a1 ` a2 ` ¨ ¨ ¨ ` an and

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an
are integers.

(Singapore)

Answer: n “ 3.

Solution 1. For n “ 1, a1 P Zą0 and
1

a1
P Zą0 if and only if a1 “ 1. Next we show that

(i) There are �nitely many px, yq P Q2

ą0
satisfying x ` y P Z and

1

x
` 1

y
P Z

Write x “ a
b
and y “ c

d
with a, b, c, d P Zą0 and gcdpa, bq “ gcdpc, dq “ 1. Then x ` y P Z

and

1

x
` 1

y
P Z is equivalent to the two divisibility onditions

bd | ad ` bc p1q and ac | ad ` bc p2q

Condition (1) implies that d | ad ` bc ðñ d | bc ðñ d | b sine gcdpc, dq “ 1. Still

from (1) we get b | ad ` bc ðñ b | ad ðñ b | d sine gcdpa, bq “ 1. From b | d and

d | b we have b “ d.

An analogous reasoning with ondition (2) shows that a “ c. Hene x “ a
b

“ c
d

“ y, i.e.,

the problem amounts to �nding all x P Qą0 suh that 2x P Zą0 and

2

x
P Zą0. Letting

n “ 2x P Zą0, we have that

2

x
P Zą0 ðñ 4

n
P Zą0 ðñ n “ 1, 2 or 4, and there are

�nitely many solutions, namely px, yq “ p1

2
, 1

2
q, p1, 1q or p2, 2q.

(ii) There are in�nitely many triples px, y, zq P Q2

ą0
suh that x`y` z P Z and

1

x
` 1

y
` 1

z
P Z.

We will look for triples suh that x ` y ` z “ 1, so we may write them in the form

px, y, zq “
ˆ

a

a ` b ` c
,

b

a ` b ` c
,

c

a ` b ` c

˙
with a, b, c P Zą0

We want these to satisfy

1

x
` 1

y
` 1

z
“ a ` b ` c

a
` a ` b ` c

b
` a ` b ` c

c
P Z ðñ b ` c

a
` a ` c

b
` a ` b

c
P Z

Fixing a “ 1, it su�es to �nd in�nitely many pairs pb, cq P Z2

ą0
suh that

1

b
` 1

c
` c

b
` b

c
“ 3 ðñ b2 ` c2 ´ 3bc ` b ` c “ 0 p˚q

To show that equation p˚q has in�nitely many solutions, we use Vieta jumping (also known

as root �ipping): starting with b “ 2, c “ 3, the following algorithm generates in�nitely

many solutions. Let c ě b, and view p˚q as a quadrati equation in b for c �xed:

b2 ´ p3c ´ 1q ¨ b ` pc2 ` cq “ 0 p˚˚q

Then there exists another root b0 P Z of p˚˚q whih satis�es b`b0 “ 3c´1 and b¨b0 “ c2`c.

Sine c ě b by assumption,

b0 “ c2 ` c

b
ě c2 ` c

c
ą c

Hene from the solution pb, cq we obtain another one pc, b0q with b0 ą c, and we an then

�jump� again, this time with c as the �variable� in the quadrati p˚q. This algorithm will

generate an in�nite sequene of distint solutions, whose �rst terms are

p2, 3q, p3, 6q, p6, 14q, p14, 35q, p35, 90q, p90, 234q, p234, 611q, p611, 1598q, p1598, 4182q, . . .
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Comment. Although not needed for solving this problem, we may also expliitly solve the reursion

given by the Vieta jumping. De�ne the sequene pxnq as follows:

x0 “ 2, x1 “ 3 and xn`2 “ 3xn`1 ´ xn ´ 1 for n ě 0

Then the triple

px, y, zq “
ˆ

1

1 ` xn ` xn`1

,
xn

1 ` xn ` xn`1

,
xn`1

1 ` xn ` xn`1

˙

satis�es the problem onditions for all n P N. It is easy to show that xn “ F2n`1 `1, where Fn denotes

the n-th term of the Fibonai sequene (F0 “ 0, F1 “ 1, and Fn`2 “ Fn`1 ` Fn for n ě 0).

Solution 2. Call the n-tuples pa1, a2, . . . , anq P Qn
ą0

satisfying the onditions of the problem

statement good, and those for whih

fpa1, . . . , anq def“ pa1 ` a2 ` ¨ ¨ ¨ ` anq
ˆ

1

a1
` 1

a2
` ¨ ¨ ¨ ` 1

an

˙

is an integer pretty. Then good n-tuples are pretty, and if pb1, . . . , bnq is pretty then

ˆ
b1

b1 ` b2 ` ¨ ¨ ¨ ` bn
,

b2

b1 ` b2 ` ¨ ¨ ¨ ` bn
, . . . ,

bn

b1 ` b2 ` ¨ ¨ ¨ ` bn

˙

is good sine the sum of its omponents is 1, and the sum of the reiproals of its omponents

equals fpb1, . . . , bnq. We delare pretty n-tuples proportional to eah other equivalent sine they

are preisely those whih give rise to the same good n-tuple. Clearly, eah suh equivalene lass

ontains exatly one n-tuple of positive integers having no ommon prime divisors. Call suh

n-tuple a primitive pretty tuple. Our task is to �nd in�nitely many primitive pretty n-tuples.

For n “ 1, there is learly a single primitive 1-tuple. For n “ 2, we have fpa, bq “ pa`bq2

ab
,

whih an be integral (for oprime a, b P Zą0) only if a “ b “ 1 (see for instane (i) in the �rst

solution).

Now we onstrut in�nitely many primitive pretty triples for n “ 3. Fix b, c, k P Zą0; we

will try to �nd su�ient onditions for the existene of an a P Qą0 suh that fpa, b, cq “ k.

Write σ “ b ` c, τ “ bc. From fpa, b, cq “ k, we have that a should satisfy the quadrati

equation

a2 ¨ σ ` a ¨ pσ2 ´ pk ´ 1qτq ` στ “ 0 (1)

whose disriminant is

∆ “ pσ2 ´ pk ´ 1qτq2 ´ 4σ2τ “ ppk ` 1qτ ´ σ2q2 ´ 4kτ 2.

We need it to be a square of an integer, say, ∆ “ M2
for some M P Z, i.e., we want

ppk ` 1qτ ´ σ2q2 ´ M2 “ 2k ¨ 2τ 2

so that it su�es to set

pk ` 1qτ ´ σ2 “ τ 2 ` k, M “ τ 2 ´ k.

The �rst relation reads σ2 “ pτ ´ 1qpk ´ τq, so if b and c satisfy

τ ´ 1 | σ2
i.e. bc ´ 1 | pb ` cq2 (2)

then k “ σ2

τ´1
` τ will be integral, and we �nd rational solutions to (1), namely

a “ σ

τ ´ 1
“ b ` c

bc ´ 1
or a “ τ 2 ´ τ

σ
“ bc ¨ pbc ´ 1q

b ` c
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We an now �nd in�nitely many pairs pb, cq satisfying (2) by Vieta jumping. For example,

if we impose

pb ` cq2 “ 5 ¨ pbc ´ 1q
then all pairs pb, cq “ pvi, vi`1q satisfy the above ondition, where

v1 “ 2, v2 “ 3, vi`2 “ 3vi`1 ´ vi for i ě 0

For pb, cq “ pvi, vi`1q, one of the solutions to (1) will be a “ pb ` cq{pbc ´ 1q “ 5{pb ` cq “
5{pvi ` vi`1q. Then the pretty triple pa, b, cq will be equivalent to the integral pretty triple

p5, vipvi ` vi`1q, vi`1pvi ` vi`1qq

After possibly dividing by 5, we obtain in�nitely many primitive pretty triples, as required.

Comment. There are many other in�nite series of pb, cq “ pvi, vi`1q with bc ´ 1 | pb ` cq2. Some of

them are:

v1 “ 1, v2 “ 3, vi`1 “ 6vi ´ vi´1, pvi ` vi`1q2 “ 8 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 2, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q;
v1 “ 1, v2 “ 5, vi`1 “ 7vi ´ vi´1, pvi ` vi`1q2 “ 9 ¨ pvivi`1 ´ 1q

(the last two are in fat one sequene prolonged in two possible diretions).
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N7.

Say that an ordered pair px, yq of integers is an irreduible lattie point if x and y

are relatively prime. For any �nite set S of irreduible lattie points, show that there is a

homogenous polynomial in two variables, fpx, yq, with integer oe�ients, of degree at least 1,

suh that fpx, yq “ 1 for eah px, yq in the set S.

Note: A homogenous polynomial of degree n is any nonzero polynomial of the form

fpx, yq “ a0x
n ` a1x

n´1y ` a2x
n´2y2 ` ¨ ¨ ¨ ` an´1xy

n´1 ` any
n.

(U.S.A.)

Solution 1. First of all, we note that �nding a homogenous polynomial fpx, yq suh that

fpx, yq “ ˘1 is enough, beause we then have f 2px, yq “ 1. Label the irreduible lattie points

px1, y1q through pxn, ynq. If any two of these lattie points pxi, yiq and pxj , yjq lie on the same

line through the origin, then pxj , yjq “ p´xi,´yiq beause both of the points are irreduible.

We then have fpxj , yjq “ ˘fpxi, yiq whenever f is homogenous, so we an assume that no two

of the lattie points are ollinear with the origin by ignoring the extra lattie points.

Consider the homogenous polynomials ℓipx, yq “ yix ´ xiy and de�ne

gipx, yq “
ź

j‰i

ℓjpx, yq.

Then ℓipxj , yjq “ 0 if and only if j “ i, beause there is only one lattie point on eah line

through the origin. Thus, gipxj , yjq “ 0 for all j ‰ i. De�ne ai “ gipxi, yiq, and note that

ai ‰ 0.

Note that gipx, yq is a degree n ´ 1 polynomial with the following two properties:

1. gipxj , yjq “ 0 if j ‰ i.

2. gipxi, yiq “ ai.

For any N ě n ´ 1, there also exists a polynomial of degree N with the same two proper-

ties. Spei�ally, let Iipx, yq be a degree 1 homogenous polynomial suh that Iipxi, yiq “ 1,

whih exists sine pxi, yiq is irreduible. Then Iipx, yqN´pn´1qgipx, yq satis�es both of the above

properties and has degree N .

We may now redue the problem to the following laim:

Claim: For eah positive integer a, there is a homogenous polynomial fapx, yq, with integer

oe�ients, of degree at least 1, suh that fapx, yq ” 1 pmod aq for all relatively prime px, yq.
To see that this laim solves the problem, take a to be the least ommon multiple of the

numbers ai (1 ď i ď n). Take fa given by the laim, hoose some power fapx, yqk that has

degree at least n ´ 1, and subtrat appropriate multiples of the gi onstruted above to obtain

the desired polynomial.

We prove the laim by fatoring a. First, if a is a power of a prime pa “ pkq, then we may

hoose either:

• fapx, yq “ pxp´1 ` yp´1qφpaq
if p is odd;

• fapx, yq “ px2 ` xy ` y2qφpaq
if p “ 2.

Now suppose a is any positive integer, and let a “ q1q2 ¨ ¨ ¨ qk, where the qi are prime powers,

pairwise relatively prime. Let fqi be the polynomials just onstruted, and let Fqi be powers of

these that all have the same degree. Note that

a

qi
Fqipx, yq ” a

qi
pmod aq

for any relatively prime x, y. By Bézout's lemma, there is an integer linear ombination of

the

a
qi

that equals 1. Thus, there is a linear ombination of the Fqi suh that Fqipx, yq ” 1

pmod aq for any relatively prime px, yq; and this polynomial is homogenous beause all the Fqi

have the same degree.
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Solution 2. As in the previous solution, label the irreduible lattie points px1, y1q, . . . , pxn, ynq
and assume without loss of generality that no two of the points are ollinear with the origin.

We indut on n to onstrut a homogenous polynomial fpx, yq suh that fpxi, yiq “ 1 for all

1 ď i ď n.

If n “ 1: Sine x1 and y1 are relatively prime, there exist some integers c, d suh that

cx1 ` dy1 “ 1. Then fpx, yq “ cx ` dy is suitable.

If n ě 2: By the indution hypothesis we already have a homogeneous polynomial gpx, yq
with gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1. Let j “ deg g,

gnpx, yq “
n´1ź

k“1

pykx ´ xkyq,

and an “ gnpxn, ynq. By assumption, an ‰ 0. Take some integers c, d suh that cxn ` dyn “ 1.

We will onstrut fpx, yq in the form

fpx, yq “ gpx, yqK ´ C ¨ gnpx, yq ¨ pcx ` dyqL,

where K and L are some positive integers and C is some integer. We assume that L “ Kj´n`1

so that f is homogenous.

Due to gpx1, y1q “ . . . “ gpxn´1, yn´1q “ 1 and gnpx1, y1q “ . . . “ gnpxn´1, yn´1q “ 0, the

property fpx1, y1q “ . . . “ fpxn´1, yn´1q “ 1 is automatially satis�ed with any hoie of K,L,

and C.

Furthermore,

fpxn, ynq “ gpxn, ynqK ´ C ¨ gnpxn, ynq ¨ pcxn ` dynqL “ gpxn, ynqK ´ Can.

If we have an exponent K suh that gpxn, ynqK ” 1 pmod anq, then we may hoose C suh that

fpxn, ynq “ 1. We now hoose suh a K.

Consider an arbitrary prime divisor p of an. By

p | an “ gnpxn, ynq “
n´1ź

k“1

pykxn ´ xkynq,

there is some 1 ď k ă n suh that xkyn ” xnyk pmod pq. We �rst show that xkxn or ykyn is

relatively prime with p. This is trivial in the ase xkyn ” xnyk ı 0 pmod pq. In the other ase,

we have xkyn ” xnyk ” 0 pmod pq, If, say p | xk, then p ∤ yk beause pxk, ykq is irreduible, so

p | xn; then p ∤ yn beause pxk, ykq is irreduible. In summary, p | xk implies p ∤ ykyn. Similarly,

p | yn implies p ∤ xkxn.

By the homogeneity of g we have the ongruenes

xd
k ¨ gpxn, ynq “ gpxkxn, xkynq ” gpxkxn, ykxnq “ xd

n ¨ gpxk, ykq “ xd
n pmod pq p1.1q

and

ydk ¨ gpxn, ynq “ gpykxn, ykynq ” gpxkyn, ykynq “ ydn ¨ gpxk, ykq “ ydn pmod pq. p1.2q

If p ∤ xkxn, then take the pp´1qst power of p1.1q; otherwise take the pp´1qst power of p1.2q;
by Fermat's theorem, in both ases we get

gpxn, ynqp´1 ” 1 pmod pq.

If pα | m, then we have

gpxn, ynqpα´1pp´1q ” 1 pmod pαq,

whih implies that the exponent K “ n ¨ ϕpanq, whih is a multiple of all pα´1pp ´ 1q, is a
suitable hoie. (The fator n is added only so that K ě n and so L ą 0.)



Shortlisted problems � solutions 87

Comment. It is possible to show that there is no onstant C for whih, given any two irreduible

lattie points, there is some homogenous polynomial f of degree at most C with integer oe�ients

that takes the value 1 on the two points. Indeed, if one of the points is p1, 0q and the other is pa, bq,
the polynomial fpx, yq “ a0x

n ` a1x
n´1y ` ¨ ¨ ¨ ` any

n
should satisfy a0 “ 1, and so an ” 1 pmod bq.

If a “ 3 and b “ 2k with k ě 3, then n ě 2k´2
. If we hoose 2k´2 ą C, this gives a ontradition.
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N8.

Let p be an odd prime number and Zą0 be the set of positive integers. Suppose that

a funtion f : Zą0 ˆ Zą0 Ñ t0, 1u satis�es the following properties:

• fp1, 1q “ 0;

• fpa, bq ` fpb, aq “ 1 for any pair of relatively prime positive integers pa, bq not both equal

to 1;

• fpa ` b, bq “ fpa, bq for any pair of relatively prime positive integers pa, bq.

Prove that

p´1ÿ

n“1

fpn2, pq ě
a

2p ´ 2.

(Italy)

Solution 1. Denote by A the set of all pairs of oprime positive integers. Notie that for

every pa, bq P A there exists a pair pu, vq P Z2
with ua ` vb “ 1. Moreover, if pu0, v0q is one

suh pair, then all suh pairs are of the form pu, vq “ pu0 ` kb, v0 ´ kaq, where k P Z. So there

exists a unique suh pair pu, vq with ´b{2 ă u ď b{2; we denote this pair by pu, vq “ gpa, bq.
Lemma. Let pa, bq P A and pu, vq “ gpa, bq. Then fpa, bq “ 1 ðñ u ą 0.

Proof. We indut on a ` b. The base ase is a ` b “ 2. In this ase, we have that a “ b “ 1,

gpa, bq “ gp1, 1q “ p0, 1q and fp1, 1q “ 0, so the laim holds.

Assume now that a` b ą 2, and so a ‰ b, sine a and b are oprime. Two ases are possible.

Case 1: a ą b.

Notie that gpa ´ b, bq “ pu, v ` uq, sine upa ´ bq ` pv ` uqb “ 1 and u P p´b{2, b{2s. Thus
fpa, bq “ 1 ðñ fpa ´ b, bq “ 1 ðñ u ą 0 by the indution hypothesis.

Case 2: a ă b. (Then, learly, b ě 2.)

Now we estimate v. Sine vb “ 1 ´ ua, we have

1 ` ab

2
ą vb ě 1 ´ ab

2
, so

1 ` a

2
ě 1

b
` a

2
ą v ě 1

b
´ a

2
ą ´a

2
.

Thus 1 ` a ą 2v ą ´a, so a ě 2v ą ´a, hene a{2 ě v ą ´a{2, and thus gpb, aq “ pv, uq.
Observe that fpa, bq “ 1 ðñ fpb, aq “ 0 ðñ fpb ´ a, aq “ 0. We know from Case 1

that gpb ´ a, aq “ pv, u ` vq. We have fpb ´ a, aq “ 0 ðñ v ď 0 by the indutive hypothesis.

Then, sine b ą a ě 1 and ua ` vb “ 1, we have v ď 0 ðñ u ą 0, and we are done. l

The Lemma proves that, for all pa, bq P A, fpa, bq “ 1 if and only if the inverse of a

modulo b, taken in t1, 2, . . . , b ´ 1u, is at most b{2. Then, for any odd prime p and integer

n suh that n ı 0 pmod pq, fpn2, pq “ 1 i� the inverse of n2 mod p is less than p{2. Sine

tn2 mod p : 1 ď n ď p ´ 1u “ tn´2 mod p : 1 ď n ď p ´ 1u, inluding multipliities (two for

eah quadrati residue in eah set), we onlude that the desired sum is twie the number of

quadrati residues that are less than p{2, i.e.,
p´1ÿ

n“1

fpn2, pq “ 2

ˇ̌
ˇ̌
"
k : 1 ď k ď p ´ 1

2
and k2 mod p ă p

2

*ˇ̌
ˇ̌ . (1)

Sine the number of perfet squares in the interval r1, p{2q is t
a
p{2u ą

a
p{2 ´ 1, we

onlude that

p´1ÿ

n“1

fpn2, pq ą 2

ˆc
p

2
´ 1

˙
“
a
2p ´ 2.
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Solution 2. We provide a di�erent proof for the Lemma. For this purpose, we use ontinued

frations to �nd gpa, bq “ pu, vq expliitly.
The funtion f is ompletely determined on A by the following

Claim. Represent a{b as a ontinued fration; that is, let a0 be an integer and a1, . . . , ak be

positive integers suh that ak ě 2 and

a

b
“ a0 ` 1

a1 ` 1

a2 ` 1

¨ ¨ ¨ ` 1

ak

“ ra0; a1, a2, . . . , aks.

Then fpa, bq “ 0 ðñ k is even.

Proof. We indut on b. If b “ 1, then a{b “ ras and k “ 0. Then, for a ě 1, an easy indution

shows that fpa, 1q “ fp1, 1q “ 0.

Now onsider the ase b ą 1. Perform the Eulidean division a “ qb ` r, with 0 ď r ă b.

We have r ‰ 0 beause gcdpa, bq “ 1. Hene

fpa, bq “ fpr, bq “ 1 ´ fpb, rq, a

b
“ rq; a1, . . . , aks, and

b

r
“ ra1; a2, . . . , aks.

Then the number of terms in the ontinued fration representations of a{b and b{r di�er by
one. Sine r ă b, the indutive hypothesis yields

fpb, rq “ 0 ðñ k ´ 1 is even,

and thus

fpa, bq “ 0 ðñ fpb, rq “ 1 ðñ k ´ 1 is odd ðñ k is even. l

Now we use the following well-known properties of ontinued frations to prove the Lemma:

Let pi and qi be oprime positive integers with ra0; a1, a2, . . . , ais “ pi{qi, with the notation

borrowed from the Claim. In partiular, a{b “ ra0; a1, a2, . . . , aks “ pk{qk. Assume that k ą 0

and de�ne q´1 “ 0 if neessary. Then

• qk “ akqk´1 ` qk´2, and

• aqk´1 ´ bpk´1 “ pkqk´1 ´ qkpk´1 “ p´1qk´1
.

Assume that k ą 0. Then ak ě 2, and

b “ qk “ akqk´1 ` qk´2 ě akqk´1 ě 2qk´1 ùñ qk´1 ď b

2
,

with strit inequality for k ą 1, and

p´1qk´1qk´1a ` p´1qkpk´1b “ 1.

Now we �nish the proof of the Lemma. It is immediate for k “ 0. If k “ 1, then p´1qk´1 “ 1,

so

´b{2 ă 0 ď p´1qk´1qk´1 ď b{2.
If k ą 1, we have qk´1 ă b{2, so

´b{2 ă p´1qk´1qk´1 ă b{2.

Thus, for any k ą 0, we �nd that gpa, bq “ pp´1qk´1qk´1, p´1qkpk´1q, and so

fpa, bq “ 1 ðñ k is odd ðñ u “ p´1qk´1qk´1 ą 0.
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Comment 1. The Lemma an also be established by observing that f is uniquely de�ned on A,
de�ning f1pa, bq “ 1 if u ą 0 in gpa, bq “ pu, vq and f1pa, bq “ 0 otherwise, and verifying that f1
satis�es all the onditions from the statement.

It seems that the main di�ulty of the problem is in onjeturing the Lemma.

Comment 2. The ase p ” 1 pmod 4q is, in fat, easier than the original problem. We have, in

general, for 1 ď a ď p ´ 1,

fpa, pq “ 1´fpp, aq “ 1´fpp´a, aq “ fpa, p´aq “ fpa`pp´aq, p´aq “ fpp, p´aq “ 1´fpp´a, pq.

If p ” 1 pmod 4q, then a is a quadrati residue modulo p if and only if p ´ a is a quadrati residue

modulo p. Therefore, denoting by rk (with 1 ď rk ď p ´ 1) the remainder of the division of k2 by p,

we get

p´1ÿ

n“1

fpn2, pq “
p´1ÿ

n“1

fprn, pq “ 1

2

p´1ÿ

n“1

pfprn, pq ` fpp ´ rn, pqq “ p ´ 1

2
.

Comment 3. The estimate for the sum

řp
n“1

fpn2, pq an be improved by re�ning the �nal argument

in Solution 1. In fat, one an prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 1

16
.

By ounting the number of perfet squares in the intervals rkp, pk ` 1{2qpq, we �nd that

p´1ÿ

n“1

fpn2, pq “
p´1ÿ

k“0

˜[dˆ
k ` 1

2

˙
p

_

´
Ya

kp
]¸

. (2)

Eah summand of (2) is non-negative. We now estimate the number of positive summands. Suppose

that a summand is zero, i.e., [dˆ
k ` 1

2

˙
p

_

“
Ya

kp
]

“: q.

Then both of the numbers kp and kp ` p{2 lie within the interval rq2, pq ` 1q2q. Hene
p

2
ă pq ` 1q2 ´ q2,

whih implies

q ě p ´ 1

4
.

Sine q ď
?
kp, if the kth summand of (2) is zero, then

k ě q2

p
ě pp ´ 1q2

16p
ą p ´ 2

16
ùñ k ě p ´ 1

16
.

So at least the �rst rp´1

16
s summands (from k “ 0 to k “ rp´1

16
s ´ 1) are positive, and the result

follows.

Comment 4. The bound an be further improved by using di�erent methods. In fat, we prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 3

4
.

To that end, we use the Legendre symbol

ˆ
a

p

˙
“

$
’&

’%

0 if p � a

1 if a is a nonzero quadrati residue mod p

´1 otherwise.

We start with the following Claim, whih tells us that there are not too many onseutive quadrati

residues or onseutive quadrati non-residues.
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Claim.

řp´1

n“1

`
n
p

˘`
n`1

p

˘
“ ´1.

Proof. We have

`
n
p

˘`
n`1

p

˘
“
`npn`1q

p

˘
. For 1 ď n ď p´1, we get that npn`1q ” n2p1`n´1q pmod pq,

hene

`npn`1q
p

˘
“

`
1`n´1

p

˘
. Sine t1 ` n´1 mod p : 1 ď n ď p ´ 1u “ t0, 2, 3, . . . , p ´ 1 mod pu, we �nd

p´1ÿ

n“1

ˆ
n

p

˙ˆ
n ` 1

p

˙
“

p´1ÿ

n“1

ˆ
1 ` n´1

p

˙
“

p´1ÿ

n“1

ˆ
n

p

˙
´ 1 “ ´1,

beause

řp
n“1

`
n
p

˘
“ 0. l

Observe that (1) beomes

p´1ÿ

n“1

fpn2, pq “ 2 |S| , S “
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ 1

*
.

We onnet S with the sum from the laim by pairing quadrati residues and quadrati non-residues.

To that end, de�ne

S1 “
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ ´1

*

T “
"
r :

p ` 1

2
ď r ď p ´ 1 and

ˆ
r

p

˙
“ 1

*

T 1 “
"
r :

p ` 1

2
ď r ď p ´ 1 and

ˆ
r

p

˙
“ ´1

*

Sine there are exatly pp ´ 1q{2 nonzero quadrati residues modulo p, |S| ` |T | “ pp ´ 1q{2. Also
we obviously have |T | ` |T 1| “ pp ´ 1q{2. Then |S| “ |T 1|.

For the sake of brevity, de�ne t “ |S| “ |T 1|. If
`
n
p

˘`
n`1

p

˘
“ ´1, then exatly of one the numbers`

n
p

˘
and

`
n`1

p

˘
is equal to 1, so

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 3

2
and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď |S| ` |S ´ 1| “ 2t.

On the other hand, if

`
n
p

˘`
n`1

p

˘
“ ´1, then exatly one of

`
n
p

˘
and

`
n`1

p

˘
is equal to ´1, and

ˇ̌
ˇ̌
"
n :

p ` 1

2
ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď |T 1| ` |T 1 ´ 1| “ 2t.

Thus, taking into aount that the middle term

` pp´1q{2
p

˘` pp`1q{2
p

˘
may happen to be ´1,

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ ´1

*ˇ̌
ˇ̌ ď 4t ` 1.

This implies that

ˇ̌
ˇ̌
"
n : 1 ď n ď p ´ 2 and

ˆ
n

p

˙ˆ
n ` 1

p

˙
“ 1

*ˇ̌
ˇ̌ ě pp ´ 2q ´ p4t ` 1q “ p ´ 4t ´ 3,

and so

´1 “
p´1ÿ

n“1

ˆ
n

p

˙ˆ
n ` 1

p

˙
ě p ´ 4t ´ 3 ´ p4t ` 1q “ p ´ 8t ´ 4,

whih implies 8t ě p ´ 3, and thus

p´1ÿ

n“1

fpn2, pq “ 2t ě p ´ 3

4
.
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Comment 5. It is possible to prove that

p´1ÿ

n“1

fpn2, pq ě p ´ 1

2
.

The ase p ” 1 pmod 4q was already mentioned, and it is the equality ase. If p ” 3 pmod 4q,
then, by a theorem of Dirihlet, we have

ˇ̌
ˇ̌
"
r : 1 ď r ď p ´ 1

2
and

ˆ
r

p

˙
“ 1

*ˇ̌
ˇ̌ ą p ´ 1

4
,

whih implies the result.

See https://en.wikipedia.org/wiki/Quadrati_residue#Dirihlet.27s_formulas for the full

statement of the theorem. It seems that no elementary proof of it is known; a proof using omplex

analysis is available, for instane, in Chapter 7 of the book Quadrati Residues and Non-Residues:

Seleted Topis, by Steve Wright, available in https://arxiv.org/abs/1408.0235.

https://en.wikipedia.org/wiki/Quadratic_residue#Dirichlet.27s_formulas
https://arxiv.org/abs/1408.0235
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