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Problems

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all funtions

f : Qą0 Ñ Qą0 satisfying

f
`
x2fpyq2

˘
“ fpxq2fpyq

for all x, y P Qą0.

(Switzerland)

A2.

Find all positive integers n ě 3 for whih there exist real numbers a1, a2, . . . , an,

an`1 “ a1, an`2 “ a2 suh that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.

(Slovakia)

A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distint �nite subsets F and G of S suh that

ř
xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 suh that

ř
xPF 1{x ‰ r for all �nite subsets

F of S.

(Luxembourg)

A4.

Let a0, a1, a2, . . . be a sequene of real numbers suh that a0 “ 0, a1 “ 1, and for

every n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.

(Belgium)

A5.

Determine all funtions f : p0,8q Ñ R satisfying

ˆ
x ` 1

x

˙
fpyq “ fpxyq ` f

´y
x

¯

for all x, y ą 0.

(South Korea)

A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real oe�ients

suh that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]
for every x1, . . . , xn P

 
0, 1, . . . , m ´ 1

(
.

Prove that the total degree of f is at least n.

(Brazil)

A7.

Find the maximal value of

S “ 3

c
a

b ` 7
` 3

c
b

c ` 7
` 3

c
c

d ` 7
` 3

c
d

a ` 7
,

where a, b, c, d are nonnegative real numbers whih satisfy a ` b ` c ` d “ 100.

(Taiwan)
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Combinatoris

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S an be partitioned into

two subsets with equal sums of elements, with one of subsets of ardinality m.

(Ieland)

C2.

Queenie and Horst play a game on a 20 ˆ 20 hessboard. In the beginning the board

is empty. In every turn, Horst plaes a blak knight on an empty square in suh a way that his

new knight does not attak any previous knights. Then Queenie plaes a white queen on an

empty square. The game gets �nished when somebody annot move.

Find the maximal positive K suh that, regardless of the strategy of Queenie, Horst an

put at least K knights on the board.

(Armenia)

C3.

Let n be a given positive integer. Sisyphus performs a sequene of turns on a board

onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.

Prove that Sisyphus annot reah the aim in less than

Qn
1

U
`
Qn
2

U
`
Qn
3

U
` ¨ ¨ ¨ `

Qn
n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)

(Netherlands)

C4.

An anti-Pasal pyramid is a �nite set of numbers, plaed in a triangle-shaped array

so that the �rst row of the array ontains one number, the seond row ontains two numbers,

the third row ontains three numbers and so on; and, exept for the numbers in the bottom

row, eah number equals the absolute value of the di�erene of the two numbers below it. For

instane, the triangle below is an anti-Pasal pyramid with four rows, in whih every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 ours exatly one:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pasal pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exatly one?

(Iran)

C5.

Let k be a positive integer. The organising ommittee of a tennis tournament is to

shedule the mathes for 2k players so that every two players play one, eah day exatly one

math is played, and eah player arrives to the tournament site the day of his �rst math, and

departs the day of his last math. For every day a player is present on the tournament, the

ommittee has to pay 1 oin to the hotel. The organisers want to design the shedule so as to

minimise the total ost of all players' stays. Determine this minimum ost.

(Russia)
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C6.

Let a and b be distint positive integers. The following in�nite proess takes plae on

an initially empty board.

piq If there is at least a pair of equal numbers on the board, we hoose suh a pair and

inrease one of its omponents by a and the other by b.

piiq If no suh pair exists, we write down two times the number 0.

Prove that, no matter how we make the hoies in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

C7.

Consider 2018 pairwise rossing irles no three of whih are onurrent. These irles

subdivide the plane into regions bounded by irular edges that meet at verties. Notie that

there are an even number of verties on eah irle. Given the irle, alternately olour the

verties on that irle red and blue. In doing so for eah irle, every vertex is oloured twie �

one for eah of the two irles that ross at that point. If the two olourings agree at a vertex,

then it is assigned that olour; otherwise, it beomes yellow. Show that, if some irle ontains

at least 2061 yellow points, then the verties of some region are all yellow.

(India)
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Geometry

G1.

Let ABC be an aute-angled triangle with irumirle Γ. Let D and E be points on

the segments AB and AC, respetively, suh that AD “ AE. The perpendiular bisetors of

the segments BD and CE interset the small ars

ŊAB and

ŊAC at points F and G respetively.

Prove that DE ‖ FG.

(Greee)

G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point suh that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respetively, so that B lies on the segment PX , C lies on the segment PY , and

=PXM “ =PYM . Prove that the quadrilateral APXY is yli.

(Australia)

G3.

A irle ω of radius 1 is given. A olletion T of triangles is alled good, if the following

onditions hold:

piq eah triangle from T is insribed in ω;

piiq no two triangles from T have a ommon interior point.

Determine all positive real numbers t suh that, for eah positive integer n, there exists a

good olletion of n triangles, eah of perimeter greater than t.

(South Afria)

G4.

A point T is hosen inside a triangle ABC. Let A1, B1, and C1 be the re�etions

of T in BC, CA, and AB, respetively. Let Ω be the irumirle of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respetively. Prove that the

lines AA2, BB2, and CC2 are onurrent on Ω.

(Mongolia)

G5.

Let ABC be a triangle with irumirle ω and inentre I. A line ℓ intersets the

lines AI, BI, and CI at points D, E, and F , respetively, distint from the points A, B, C,

and I. The perpendiular bisetors x, y, and z of the segments AD, BE, and CF , respetively

determine a triangle Θ. Show that the irumirle of the triangle Θ is tangent to ω.

(Denmark)

G6.

A onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

G7.

Let O be the irumentre, and Ω be the irumirle of an aute-angled triangle ABC.

Let P be an arbitrary point on Ω, distint from A, B, C, and their antipodes in Ω. Denote

the irumentres of the triangles AOP , BOP , and COP by OA, OB, and OC , respetively.

The lines ℓA, ℓB, and ℓC perpendiular to BC, CA, and AB pass through OA, OB, and OC ,

respetively. Prove that the irumirle of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .

(Russia)
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Number Theory

N1.

Determine all pairs pn, kq of distint positive integers suh that there exists a positive

integer s for whih the numbers of divisors of sn and of sk are equal.

(Ukraine)

N2.

Let n ą 1 be a positive integer. Eah ell of an n ˆ n table ontains an integer.

Suppose that the following onditions are satis�ed:

piq Eah number in the table is ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any olumn, is ongruent

to n modulo n2
.

Let Ri be the produt of the numbers in the ith row, and Cj be the produt of the numbers in

the jth olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are ongruent modulo n4
.

(Indonesia)

N3.

De�ne the sequene a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequene whih an be expressed as a sum of (two or more) distint terms

of the sequene, as well as in�nitely many of those whih annot be expressed in suh a way.

(Serbia)

N4.

Let a1, a2, . . ., an, . . . be a sequene of positive integers suh that

a1

a2
` a2

a3
` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m suh that an “ an`1 for all n ě m.

(Mongolia)

N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t.

Is it possible that both xy and zt are perfet squares?

(Russia)

N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a funtion suh that fpm ` nq | fpmq ` fpnq for

all pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whih divides

all values of f .

(Mexio)

N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distint

positive integers not exeeding 5n. Suppose that the sequene

a1

b1
,
a2

b2
, . . . ,

an

bn

forms an arithmeti progression. Prove that the terms of the sequene are equal.

(Thailand)
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Solutions

Algebra

A1.

Let Qą0 denote the set of all positive rational numbers. Determine all funtions

f : Qą0 Ñ Qą0 satisfying

f
`
x2fpyq2

˘
“ fpxq2fpyq p˚q

for all x, y P Qą0.

(Switzerland)

Answer: fpxq “ 1 for all x P Qą0.

Solution. Take any a, b P Qą0. By substituting x “ fpaq, y “ b and x “ fpbq, y “ a into p˚q
we get

f
`
fpaq

˘2
fpbq “ f

`
fpaq2fpbq2

˘
“ f

`
fpbq

˘2
fpaq,

whih yields

f
`
fpaq

˘2

fpaq “ f
`
fpbq

˘2

fpbq for all a, b P Qą0.

In other words, this shows that there exists a onstant C P Qą0 suh that f
`
fpaq

˘2 “ Cfpaq,
or ˜

f
`
fpaq

˘

C

¸2

“ fpaq
C

for all a P Qą0. (1)

Denote by fnpxq “ fpfp. . . pfloooomoooon
n

pxqq . . . qq the nth

iteration of f . Equality (1) yields

fpaq
C

“
ˆ
f 2paq
C

˙2

“
ˆ
f 3paq
C

˙4

“ ¨ ¨ ¨ “
ˆ
fn`1paq

C

˙2n

for all positive integer n. So, fpaq{C is the 2n-th power of a rational number for all positive

integer n. This is impossible unless fpaq{C “ 1, sine otherwise the exponent of some prime in

the prime deomposition of fpaq{C is not divisible by su�iently large powers of 2. Therefore,

fpaq “ C for all a P Qą0.

Finally, after substituting f ” C into p˚q we get C “ C3
, whene C “ 1. So fpxq ” 1 is the

unique funtion satisfying p˚q.

Comment 1. There are several variations of the solution above. For instane, one may start with

�nding fp1q “ 1. To do this, let d “ fp1q. By substituting x “ y “ 1 and x “ d2, y “ 1 into p˚q
we get fpd2q “ d3 and fpd6q “ fpd2q2 ¨ d “ d7. By substituting now x “ 1, y “ d2 we obtain

fpd6q “ d2 ¨ d3 “ d5. Therefore, d7 “ fpd6q “ d5, whene d “ 1.

After that, the rest of the solution simpli�es a bit, sine we already know that C “ fpfp1qq2

fp1q “ 1.

Hene equation p1q beomes merely fpfpaqq2 “ fpaq, whih yields fpaq “ 1 in a similar manner.

Comment 2. There exist nononstant funtions f : R` Ñ R`
satisfying p˚q for all real x, y ą 0 �

e.g., fpxq “ ?
x.
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A2.

Find all positive integers n ě 3 for whih there exist real numbers a1, a2, . . . , an,

an`1 “ a1, an`2 “ a2 suh that

aiai`1 ` 1 “ ai`2

for all i “ 1, 2, . . . , n.

(Slovakia)

Answer: n an be any multiple of 3.

Solution 1. For the sake of onveniene, extend the sequene a1, . . . , an`2 to an in�nite

periodi sequene with period n. (n is not neessarily the shortest period.)

If n is divisible by 3, then pa1, a2, . . .q “ p´1,´1, 2,´1,´1, 2, . . .q is an obvious solution.

We will show that in every periodi sequene satisfying the reurrene, eah positive term is

followed by two negative values, and after them the next number is positive again. From this,

it follows that n is divisible by 3.

If the sequene ontains two onseutive positive numbers ai, ai`1, then ai`2 “ aiai`1`1 ą 1,

so the next value is positive as well; by indution, all numbers are positive and greater than 1.

But then ai`2 “ aiai`1 ` 1 ě 1 ¨ ai`1 ` 1 ą ai`1 for every index i, whih is impossible: our

sequene is periodi, so it annot inrease everywhere.

If the number 0 ours in the sequene, ai “ 0 for some index i, then it follows that

ai`1 “ ai´1ai ` 1 and ai`2 “ aiai`1 ` 1 are two onseutive positive elements in the sequenes

and we get the same ontradition again.

Notie that after any two onseutive negative numbers the next one must be positive: if

ai ă 0 and ai`1 ă 0, then ai`2 “ a1ai`1 ` 1 ą 1 ą 0. Hene, the positive and negative numbers

follow eah other in suh a way that eah positive term is followed by one or two negative values

and then omes the next positive term.

Consider the ase when the positive and negative values alternate. So, if ai is a negative

value then ai`1 is positive, ai`2 is negative and ai`3 is positive again.

Notie that aiai`1 ` 1 “ ai`2 ă 0 ă ai`3 “ ai`1ai`2 ` 1; by ai`1 ą 0 we onlude ai ă ai`2.

Hene, the negative values form an in�nite inreasing subsequene, ai ă ai`2 ă ai`4 ă . . .,

whih is not possible, beause the sequene is periodi.

The only ase left is when there are onseutive negative numbers in the sequene. Suppose

that ai and ai`1 are negative; then ai`2 “ aiai`1 ` 1 ą 1. The number ai`3 must be negative.

We show that ai`4 also must be negative.

Notie that ai`3 is negative and ai`4 “ ai`2ai`3 ` 1 ă 1 ă aiai`1 ` 1 “ ai`2, so

ai`5 ´ ai`4 “ pai`3ai`4 ` 1q ´ pai`2ai`3 ` 1q “ ai`3pai`4 ´ ai`2q ą 0,

therefore ai`5 ą ai`4. Sine at most one of ai`4 and ai`5 an be positive, that means that ai`4

must be negative.

Now ai`3 and ai`4 are negative and ai`5 is positive; so after two negative and a positive

terms, the next three terms repeat the same pattern. That ompletes the solution.

Solution 2. We prove that the shortest period of the sequene must be 3. Then it follows

that n must be divisible by 3.

Notie that the equation x2 ` 1 “ x has no real root, so the numbers a1, . . . , an annot be

all equal, hene the shortest period of the sequene annot be 1.

By applying the reurrene relation for i and i ` 1,

pai`2 ´ 1qai`2 “ aiai`1ai`2 “ aipai`3 ´ 1q, so

a2i`2 ´ aiai`3 “ ai`2 ´ ai.
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By summing over i “ 1, 2, . . . , n, we get

nÿ

i“1

pai ´ ai`3q2 “ 0.

That proves that ai “ ai`3 for every index i, so the sequene a1, a2, . . . is indeed periodi with

period 3. The shortest period annot be 1, so it must be 3; therefore, n is divisible by 3.

Comment. By solving the system of equations ab ` 1 “ c, bc ` 1 “ a, ca ` 1 “ b, it an be seen

that the pattern p´1,´1, 2q is repeated in all sequenes satisfying the problem onditions.
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A3.

Given any set S of positive integers, show that at least one of the following two

assertions holds:

(1) There exist distint �nite subsets F and G of S suh that

ř
xPF 1{x “ ř

xPG 1{x ;

(2) There exists a positive rational number r ă 1 suh that

ř
xPF 1{x ‰ r for all �nite subsets

F of S.

(Luxembourg)

Solution 1. Argue indiretly. Agree, as usual, that the empty sum is 0 to onsider rationals

in r0, 1q; adjoining 0 auses no harm, sine

ř
xPF 1{x “ 0 for no nonempty �nite subset F of S.

For every rational r in r0, 1q, let Fr be the unique �nite subset of S suh that

ř
xPFr

1{x “ r.

The argument hinges on the lemma below.

Lemma. If x is a member of S and q and r are rationals in r0, 1q suh that q ´ r “ 1{x, then x

is a member of Fq if and only if it is not one of Fr.

Proof. If x is a member of Fq, then

ÿ

yPFqrtxu

1

y
“

ÿ

yPFq

1

y
´ 1

x
“ q ´ 1

x
“ r “

ÿ

yPFr

1

y
,

so Fr “ Fq r txu, and x is not a member of Fr. Conversely, if x is not a member of Fr, then

ÿ

yPFrYtxu

1

y
“

ÿ

yPFr

1

y
` 1

x
“ r ` 1

x
“ q “

ÿ

yPFq

1

y
,

so Fq “ Fr Y txu, and x is a member of Fq. l

Consider now an element x of S and a positive rational r ă 1. Let n “ trxu and onsider

the sets Fr´k{x, k “ 0, . . . , n. Sine 0 ď r ´ n{x ă 1{x, the set Fr´n{x does not ontain x, and

a repeated appliation of the lemma shows that the Fr´pn´2kq{x do not ontain x, whereas the

Fr´pn´2k´1q{x do. Consequently, x is a member of Fr if and only if n is odd.

Finally, onsider F2{3. By the preeding, t2x{3u is odd for eah x in F2{3, so 2x{3 is not

integral. Sine F2{3 is �nite, there exists a positive rational ε suh that tp2{3 ´ εqxu “ t2x{3u
for all x in F2{3. This implies that F2{3 is a subset of F2{3´ε whih is impossible.

Comment. The solution above an be adapted to show that the problem statement still holds, if the

ondition r ă 1 in (2) is replaed with r ă δ, for an arbitrary positive δ. This yields that, if S does not

satisfy (1), then there exist in�nitely many positive rational numbers r ă 1 suh that

ř
xPF 1{x ‰ r

for all �nite subsets F of S.

Solution 2. A �nite S learly satis�es (2), so let S be in�nite. If S fails both onditions,

so does S r t1u. We may and will therefore assume that S onsists of integers greater than 1.

Label the elements of S inreasingly x1 ă x2 ă ¨ ¨ ¨ , where x1 ě 2.

We �rst show that S satis�es (2) if xn`1 ě 2xn for all n. In this ase, xn ě 2n´1x1 for

all n, so

s “
ÿ

ně1

1

xn

ď
ÿ

ně1

1

2n´1x1

“ 2

x1

.

If x1 ě 3, or x1 “ 2 and xn`1 ą 2xn for some n, then
ř

xPF 1{x ă s ă 1 for every �nite subset

F of S, so S satis�es (2); and if x1 “ 2 and xn`1 “ 2xn for all n, that is, xn “ 2n for all n, then

every �nite subset F of S onsists of powers of 2, so
ř

xPF 1{x ‰ 1{3 and again S satis�es (2).

Finally, we deal with the ase where xn`1 ă 2xn for some n. Consider the positive rational

r “ 1{xn ´ 1{xn`1 ă 1{xn`1. If r “ ř
xPF 1{x for no �nite subset F of S, then S satis�es (2).
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We now assume that r “ ř
xPF0

1{x for some �nite subset F0 of S, and show that S satis�es (1).

Sine

ř
xPF0

1{x “ r ă 1{xn`1, it follows that xn`1 is not a member of F0, so

ÿ

xPF0Ytxn`1u

1

x
“

ÿ

xPF0

1

x
` 1

xn`1

“ r ` 1

xn`1

“ 1

xn

.

Consequently, F “ F0 Y txn`1u and G “ txnu are distint �nite subsets of S suh thatř
xPF 1{x “ ř

xPG 1{x, and S satis�es (1).
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A4.

Let a0, a1, a2, . . . be a sequene of real numbers suh that a0 “ 0, a1 “ 1, and for every

n ě 2 there exists 1 ď k ď n satisfying

an “ an´1 ` ¨ ¨ ¨ ` an´k

k
.

Find the maximal possible value of a2018 ´ a2017.

(Belgium)

Answer: The maximal value is

2016
20172

.

Solution 1. The laimed maximal value is ahieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2016 “ 1, a2017 “ a2016 ` ¨ ¨ ¨ ` a0

2017
“ 1 ´ 1

2017
,

a2018 “ a2017 ` ¨ ¨ ¨ ` a1

2017
“ 1 ´ 1

20172
.

Now we need to show that this value is optimal. For brevity, we use the notation

Spn, kq “ an´1 ` an´2 ` ¨ ¨ ¨ ` an´k for nonnegative integers k ď n.

In partiular, Spn, 0q “ 0 and Spn, 1q “ an´1. In these terms, for every integer n ě 2 there

exists a positive integer k ď n suh that an “ Spn, kq{k.
For every integer n ě 1 we de�ne

Mn “ max
1ďkďn

Spn, kq
k

, mn “ min
1ďkďn

Spn, kq
k

, and ∆n “ Mn ´ mn ě 0.

By de�nition, an P rmn,Mns for all n ě 2; on the other hand, an´1 “ Spn, 1q{1 P rmn,Mns.
Therefore,

a2018 ´ a2017 ď M2018 ´ m2018 “ ∆2018,

and we are interested in an upper bound for ∆2018.

Also by de�nition, for any 0 ă k ď n we have kmn ď Spn, kq ď kMn; notie that these

inequalities are also valid for k “ 0.

Claim 1. For every n ą 2, we have ∆n ď n´1
n
∆n´1.

Proof. Choose positive integers k, ℓ ď n suh that Mn “ Spn, kq{k and mn “ Spn, ℓq{ℓ. We

have Spn, kq “ an´1 ` Spn ´ 1, k ´ 1q, so

kpMn ´ an´1q “ Spn, kq ´ kan´1 “ Spn ´ 1, k ´ 1q ´ pk ´ 1qan´1 ď pk ´ 1qpMn´1 ´ an´1q,

sine Spn ´ 1, k ´ 1q ď pk ´ 1qMn´1. Similarly, we get

ℓpan´1 ´ mnq “ pℓ ´ 1qan´1 ´ Spn ´ 1, ℓ ´ 1q ď pℓ ´ 1qpan´1 ´ mn´1q.

Sine mn´1 ď an´1 ď Mn´1 and k, ℓ ď n, the obtained inequalities yield

Mn ´ an´1 ď k ´ 1

k
pMn´1 ´ an´1q ď n ´ 1

n
pMn´1 ´ an´1q and

an´1 ´ mn ď ℓ ´ 1

ℓ
pan´1 ´ mn´1q ď n ´ 1

n
pan´1 ´ mn´1q.

Therefore,

∆n “ pMn ´ an´1q ` pan´1 ´ mnq ď n ´ 1

n

`
pMn´1 ´ an´1q ` pan´1 ´ mn´1q

˘
“ n ´ 1

n
∆n´1. l
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Bak to the problem, if an “ 1 for all n ď 2017, then a2018 ď 1 and hene a2018 ´ a2017 ď 0.

Otherwise, let 2 ď q ď 2017 be the minimal index with aq ă 1. We have Spq, iq “ i for all

i “ 1, 2, . . . , q ´ 1, while Spq, qq “ q ´ 1. Therefore, aq ă 1 yields aq “ Spq, qq{q “ 1 ´ 1
q
.

Now we have Spq ` 1, iq “ i´ 1
q
for i “ 1, 2, . . . , q, and Spq ` 1, q ` 1q “ q ´ 1

q
. This gives us

mq`1 “ Spq ` 1, 1q
1

“ Spq ` 1, q ` 1q
q ` 1

“ q ´ 1

q
and Mq`1 “ Spq ` 1, qq

q
“ q2 ´ 1

q2
,

so ∆q`1 “ Mq`1 ´ mq`1 “ pq ´ 1q{q2. Denoting N “ 2017 ě q and using Claim 1 for

n “ q ` 2, q ` 3, . . . , N ` 1 we �nally obtain

∆N`1 ď q ´ 1

q2
¨ q ` 1

q ` 2
¨ q ` 2

q ` 3
¨ ¨ ¨ N

N ` 1
“ 1

N ` 1

ˆ
1 ´ 1

q2

˙
ď 1

N ` 1

ˆ
1 ´ 1

N2

˙
“ N ´ 1

N2
,

as required.

Comment 1. One may hek that the maximal value of a2018 ´ a2017 is attained at the unique

sequene, whih is presented in the solution above.

Comment 2. An easier question would be to determine the maximal value of |a2018 ´ a2017|. In this

version, the answer

1
2018

is ahieved at

a1 “ a2 “ ¨ ¨ ¨ “ a2017 “ 1, a2018 “ a2017 ` ¨ ¨ ¨ ` a0

2018
“ 1 ´ 1

2018
.

To prove that this value is optimal, it su�es to notie that ∆2 “ 1
2
and to apply Claim 1 obtaining

|a2018 ´ a2017| ď ∆2018 ď 1

2
¨ 2
3

¨ ¨ ¨ 2017
2018

“ 1

2018
.

Solution 2. We present a di�erent proof of the estimate a2018 ´ a2017 ď 2016
20172

. We keep the

same notations of Spn, kq, mn and Mn from the previous solution.

Notie that Spn, nq “ Spn, n ´ 1q, as a0 “ 0. Also notie that for 0 ď k ď ℓ ď n we have

Spn, ℓq “ Spn, kq ` Spn ´ k, ℓ ´ kq.
Claim 2. For every positive integer n, we have mn ď mn`1 and Mn`1 ď Mn, so the segment

rmn`1,Mn`1s is ontained in rmn,Mns.
Proof. Choose a positive integer k ď n ` 1 suh that mn`1 “ Spn ` 1, kq{k. Then we have

kmn`1 “ Spn ` 1, kq “ an ` Spn, k ´ 1q ě mn ` pk ´ 1qmn “ kmn,

whih establishes the �rst inequality in the Claim. The proof of the seond inequality is

similar. l

Claim 3. For every positive integers k ě n, we have mn ď ak ď Mn.

Proof. By Claim 2, we have rmk,Mks Ď rmk´1,Mk´1s Ď ¨ ¨ ¨ Ď rmn,Mns. Sine ak P rmk,Mks,
the laim follows. l
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Claim 4. For every integer n ě 2, we have Mn “ Spn, n ´ 1q{pn ´ 1q and mn “ Spn, nq{n.
Proof. We use indution on n. The base ase n “ 2 is routine. To perform the indution step,

we need to prove the inequalities

Spn, nq
n

ď Spn, kq
k

and

Spn, kq
k

ď Spn, n ´ 1q
n ´ 1

(1)

for every positive integer k ď n. Clearly, these inequalities hold for k “ n and k “ n ´ 1, as

Spn, nq “ Spn, n ´ 1q ą 0. In the sequel, we assume that k ă n ´ 1.

Now the �rst inequality in (1) rewrites as nSpn, kq ě kSpn, nq “ k
`
Spn, kq`Spn´k, n´kq

˘
,

or, anelling the terms ourring on both parts, as

pn ´ kqSpn, kq ě kSpn ´ k, n ´ kq ðñ Spn, kq ě k ¨ Spn ´ k, n ´ kq
n ´ k

.

By the indution hypothesis, we have Spn ´ k, n ´ kq{pn ´ kq “ mn´k. By Claim 3, we get

an´i ě mn´k for all i “ 1, 2, . . . , k. Summing these k inequalities we obtain

Spn, kq ě kmn´k “ k ¨ Spn ´ k, n ´ kq
n ´ k

,

as required.

The seond inequality in (1) is proved similarly. Indeed, this inequality is equivalent to

pn ´ 1qSpn, kq ď kSpn, n ´ 1q ðñ pn ´ k ´ 1qSpn, kq ď kSpn ´ k, n ´ k ´ 1q

ðñ Spn, kq ď k ¨ Spn ´ k, n ´ k ´ 1q
n ´ k ´ 1

“ kMn´k;

the last inequality follows again from Claim 3, as eah term in Spn, kq is at most Mn´k. l

Now we an prove the required estimate for a2018 ´ a2017. Set N “ 2017. By Claim 4,

aN`1 ´ aN ď MN`1 ´ aN “ SpN ` 1, Nq
N

´ aN “ aN ` SpN,N ´ 1q
N

´ aN

“ SpN,N ´ 1q
N

´ N ´ 1

N
¨ aN .

On the other hand, the same Claim yields

aN ě mN “ SpN,Nq
N

“ SpN,N ´ 1q
N

.

Notiing that eah term in SpN,N ´ 1q is at most 1, so SpN,N ´ 1q ď N ´ 1, we �nally obtain

aN`1 ´ aN ď SpN,N ´ 1q
N

´ N ´ 1

N
¨ SpN,N ´ 1q

N
“ SpN,N ´ 1q

N2
ď N ´ 1

N2
.

Comment 1. Claim 1 in Solution 1 an be dedued from Claims 2 and 4 in Solution 2.

By Claim 4 we have Mn “ Spn,n´1q
n´1

and mn “ Spn,nq
n

“ Spn,n´1q
n

. It follows that ∆n “ Mn ´ mn “
Spn,n´1q

pn´1qn and so Mn “ n∆n and mn “ pn ´ 1q∆n

Similarly, Mn´1 “ pn ´ 1q∆n´1 and mn´1 “ pn ´ 2q∆n´1. Then the inequalities mn´1 ď mn and

Mn ď Mn´1 from Claim 2 write as pn´ 2q∆n´1 ď pn´ 1q∆n and n∆n ď pn´ 1q∆n´1. Hene we have

the double inequality

n ´ 2

n ´ 1
∆n´1 ď ∆n ď n ´ 1

n
∆n´1.
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Comment 2. Both solutions above disuss the properties of an arbitrary sequene satisfying the

problem onditions. Instead, one may investigate only an optimal sequene whih maximises the value

of a2018 ´ a2017. Here we present an observation whih allows to simplify suh investigation � for

instane, the proofs of Claim 1 in Solution 1 and Claim 4 in Solution 2.

The sequene panq is uniquely determined by hoosing, for every n ě 2, a positive integer kpnq ď n

suh that an “ Spn, kpnqq{kpnq. Take an arbitrary 2 ď n0 ď 2018, and assume that all suh inte-

gers kpnq, for n ‰ n0, are �xed. Then, for every n, the value of an is a linear funtion in an0
(whose

possible values onstitute some disrete subset of rmn0
,Mn0

s ontaining both endpoints). Hene,

a2018 ´ a2017 is also a linear funtion in an0
, so it attains its maximal value at one of the endpoints of

the segment rmn0
,Mn0

s.
This shows that, while dealing with an optimal sequene, we may assume an P tmn,Mnu for all

2 ď n ď 2018. Now one an easily see that, if an “ mn, thenmn`1 “ mn andMn`1 ď mn`nMn

n`1
; similar

estimates hold in the ase an “ Mn. This already establishes Claim 1, and simpli�es the indutive

proof of Claim 4, both applied to an optimal sequene.
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A5.

Determine all funtions f : p0,8q Ñ R satisfying

ˆ
x ` 1

x

˙
fpyq “ fpxyq ` f

´y
x

¯
p1q

for all x, y ą 0.

(South Korea)

Answer: fpxq “ C1x ` C2

x
with arbitrary onstants C1 and C2.

Solution 1. Fix a real number a ą 1, and take a new variable t. For the values fptq, fpt2q,
fpatq and fpa2t2q, the relation (1) provides a system of linear equations:

x “ y “ t :

ˆ
t ` 1

t

˙
fptq “ fpt2q ` fp1q (2a)

x “ t

a
, y “ at :

ˆ
t

a
` a

t

˙
fpatq “ fpt2q ` fpa2q (2b)

x “ a2t, y “ t :

ˆ
a2t ` 1

a2t

˙
fptq “ fpa2t2q ` f

ˆ
1

a2

˙
(2)

x “ y “ at :

ˆ
at ` 1

at

˙
fpatq “ fpa2t2q ` fp1q (2d)

In order to eliminate fpt2q, take the di�erene of (2a) and (2b); from (2) and (2d) eliminate

fpa2t2q; then by taking a linear ombination, eliminate fpatq as well:
ˆ
t ` 1

t

˙
fptq ´

ˆ
t

a
` a

t

˙
fpatq “ fp1q ´ fpa2q and

ˆ
a2t ` 1

a2t

˙
fptq ´

ˆ
at ` 1

at

˙
fpatq “ fp1{a2q ´ fp1q, so

˜ˆ
at ` 1

at

˙ˆ
t ` 1

t

˙
´
ˆ
t

a
` a

t

˙ˆ
a2t ` 1

a2t

˙¸

fptq

“
ˆ
at ` 1

at

˙`
fp1q ´ fpa2q

˘
´
ˆ
t

a
` a

t

˙`
fp1{a2q ´ fp1q

˘
.

Notie that on the left-hand side, the oe�ient of fptq is nonzero and does not depend on t:

ˆ
at ` 1

at

˙ˆ
t ` 1

t

˙
´
ˆ
t

a
` a

t

˙ˆ
a2t ` 1

a2t

˙
“ a ` 1

a
´
ˆ
a3 ` 1

a3

˙
ă 0.

After dividing by this �xed number, we get

fptq “ C1t ` C2

t
p3q

where the numbers C1 and C2 are expressed in terms of a, fp1q, fpa2q and fp1{a2q, and they

do not depend on t.

The funtions of the form (3) satisfy the equation:

ˆ
x ` 1

x

˙
fpyq “

ˆ
x ` 1

x

˙ˆ
C1y ` C2

y

˙
“
ˆ
C1xy ` C2

xy

˙
`
ˆ
C1

y

x
` C2

x

y

˙
“ fpxyq ` f

´y
x

¯
.
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Solution 2. We start with an observation. If we substitute x “ a ‰ 1 and y “ an in (1), we

obtain

fpan`1q ´
ˆ
a ` 1

a

˙
fpanq ` fpan´1q “ 0.

For the sequene zn “ an, this is a homogeneous linear reurrene of the seond order, and its

harateristi polynomial is t2 ´
`
a ` 1

a

˘
t ` 1 “ pt ´ aqpt ´ 1

a
q with two distint nonzero roots,

namely a and 1{a. As is well-known, the general solution is zn “ C1a
n ` C2p1{aqn where the

index n an be as well positive as negative. Of ourse, the numbers C1 and C2 may depend of

the hoie of a, so in fat we have two funtions, C1 and C2, suh that

fpanq “ C1paq ¨ an ` C2paq
an

for every a ‰ 1 and every integer n. p4q

The relation (4) an be easily extended to rational values of n, so we may onjeture that C1

and C2 are onstants, and whene fptq “ C1t ` C2

t
. As it was seen in the previous solution,

suh funtions indeed satisfy (1).

The equation (1) is linear in f ; so if some funtions f1 and f2 satisfy (1) and c1, c2 are real

numbers, then c1f1pxq`c2f2pxq is also a solution of (1). In order to make our formulas simpler,

de�ne

f0pxq “ fpxq ´ fp1q ¨ x.
This funtion is another one satisfying (1) and the extra onstraint f0p1q “ 0. Repeating the

same argument on linear reurrenes, we an write f0paq “ Kpaqan ` Lpaq
an

with some funtions

K and L. By substituting n “ 0, we an see that Kpaq ` Lpaq “ f0p1q “ 0 for every a. Hene,

f0panq “ Kpaq
ˆ
an ´ 1

an

˙
.

Now take two numbers a ą b ą 1 arbitrarily and substitute x “ pa{bqn and y “ pabqn in (1):

ˆ
an

bn
` bn

an

˙
f0
`
pabqn

˘
“ f0

`
a2n

˘
` f0

`
b2n

˘
, so

ˆ
an

bn
` bn

an

˙
Kpabq

ˆ
pabqn ´ 1

pabqn
˙

“ Kpaq
ˆ
a2n ´ 1

a2n

˙
` Kpbq

ˆ
b2n ´ 1

b2n

˙
, or equivalently

Kpabq
ˆ
a2n ´ 1

a2n
` b2n ´ 1

b2n

˙
“ Kpaq

ˆ
a2n ´ 1

a2n

˙
` Kpbq

ˆ
b2n ´ 1

b2n

˙
. (5)

By dividing (5) by a2n and then taking limit with n Ñ `8 we get Kpabq “ Kpaq. Then (5)

redues to Kpaq “ Kpbq. Hene, Kpaq “ Kpbq for all a ą b ą 1.

Fix a ą 1. For every x ą 0 there is some b and an integer n suh that 1 ă b ă a and x “ bn.

Then

f0pxq “ f0pbnq “ Kpbq
ˆ
bn ´ 1

bn

˙
“ Kpaq

ˆ
x ´ 1

x

˙
.

Hene, we have fpxq “ f0pxq ` fp1qx “ C1x ` C2

x
with C1 “ Kpaq ` fp1q and C2 “ ´Kpaq.

Comment. After establishing (5), there are several variants of �nishing the solution. For example,

instead of taking a limit, we an obtain a system of linear equations for Kpaq, Kpbq and Kpabq by

substituting two positive integers n in (5), say n “ 1 and n “ 2. This approah leads to a similar

ending as in the �rst solution.

Optionally, we de�ne another funtion f1pxq “ f0pxq ´ C
`
x ´ 1

x

˘
and presribe Kpcq “ 0 for

another �xed c. Then we an hoose ab “ c and derease the number of terms in (5).
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A6.

Let m,n ě 2 be integers. Let fpx1, . . . , xnq be a polynomial with real oe�ients suh

that

fpx1, . . . , xnq “
Yx1 ` . . . ` xn

m

]
for every x1, . . . , xn P

 
0, 1, . . . , m ´ 1

(
.

Prove that the total degree of f is at least n.

(Brazil)

Solution. We transform the problem to a single variable question by the following

Lemma. Let a1, . . . , an be nonnegative integers and let Gpxq be a nonzero polynomial with

degG ď a1 ` . . . ` an. Suppose that some polynomial F px1, . . . , xnq satis�es

F px1, . . . , xnq “ Gpx1 ` . . . ` xnq for px1, . . . , xnq P t0, 1, . . . , a1u ˆ . . . ˆ t0, 1, . . . , anu.

Then F annot be the zero polynomial, and degF ě degG.

For proving the lemma, we will use forward di�erenes of polynomials. If ppxq is a polyno-

mial with a single variable, then de�ne p∆pqpxq “ ppx ` 1q ´ ppxq. It is well-known that if p is

a nononstant polynomial then deg∆p “ deg p ´ 1.

If ppx1, . . . , xnq is a polynomial with n variables and 1 ď k ď n then let

p∆kpqpx1, . . . , xnq “ ppx1, . . . , xk´1, xk ` 1, xk`1, . . . , xnq ´ ppx1, . . . , xnq.

It is also well-known that either ∆kp is the zero polynomial or degp∆kpq ď deg p ´ 1.

Proof of the lemma. We apply indution on the degree of G. If G is a onstant polynomial

then we have F p0, . . . , 0q “ Gp0q ‰ 0, so F annot be the zero polynomial.

Suppose that degG ě 1 and the lemma holds true for lower degrees. Sine a1 ` . . . ` an ě
degG ą 0, at least one of a1, . . . , an is positive; without loss of generality suppose a1 ě 1.

Consider the polynomials F1 “ ∆1F andG1 “ ∆G. On the grid t0, . . . , a1´1uˆt0, . . . , a2uˆ
. . . ˆ t0, . . . , anu we have

F1px1, . . . , xnq “ F px1 ` 1, x2, . . . , xnq ´ F px1, x2, . . . , xnq “
“ Gpx1 ` . . . ` xn ` 1q ´ Gpx1 ` . . . ` xnq “ G1px1 ` . . . ` xnq.

Sine G is nononstant, we have degG1 “ degG´1 ď pa1 ´1q`a2 ` . . .`an. Therefore we an

apply the indution hypothesis to F1 and G1 and onlude that F1 is not the zero polynomial

and degF1 ě degG1. Hene, deg F ě degF1 ` 1 ě degG1 ` 1 “ degG. That �nishes the

proof. l

To prove the problem statement, take the unique polynomial gpxq so that gpxq “
X
x
m

\
for

x P
 
0, 1, . . . , npm ´ 1q

(
and deg g ď npm ´ 1q. Notie that preisely npm ´ 1q ` 1 values

of g are presribed, so gpxq indeed exists and is unique. Notie further that the onstraints

gp0q “ gp1q “ 0 and gpmq “ 1 together enfore deg g ě 2.

By applying the lemma to a1 “ . . . “ an “ m ´ 1 and the polynomials f and g, we ahieve

deg f ě deg g. Hene we just need a suitable lower bound on deg g.

Consider the polynomial hpxq “ gpx ` mq ´ gpxq ´ 1. The degree of gpx ` mq ´ gpxq is

deg g ´ 1 ě 1, so deg h “ deg g ´ 1 ě 1, and therefore h annot be the zero polynomial. On the

other hand, h vanishes at the points 0, 1, . . . , npm ´ 1q ´ m, so h has at least pn ´ 1qpm ´ 1q
roots. Hene,

deg f ě deg g “ deg h ` 1 ě pn ´ 1qpm ´ 1q ` 1 ě n.
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Comment 1. In the lemma we have equality for the hoie F px1, . . . , xnq “ Gpx1 ` . . . ` xnq, so it

indeed transforms the problem to an equivalent single-variable question.

Comment 2. If m ě 3, the polynomial hpxq an be replaed by ∆g. Notie that

p∆gqpxq “
#
1 if x ” ´1 pmod mq
0 otherwise

for x “ 0, 1, . . . , npm ´ 1q ´ 1.

Hene, ∆g vanishes at all integers x with 0 ď x ă npm ´ 1q and x ı ´1 pmod mq. This leads to

deg g ě pm´1q2n
m

` 1.

If m is even then this lower bound an be improved to npm ´ 1q. For 0 ď N ă npm ´ 1q, the
pN ` 1qst forward di�erene at x “ 0 is

`
∆N`1

˘
gp0q “

Nÿ

k“0

p´1qN´k

ˆ
N

k

˙
p∆gqpkq “

ÿ

0ďkďN
k”´1 pmod mq

p´1qN´k

ˆ
N

k

˙
. p˚q

Sine m is even, all signs in the last sum are equal; with N “ npm´1q´1 this proves ∆npm´1qgp0q ‰ 0,

indiating that deg g ě npm ´ 1q.
However, there are in�nitely many ases when all terms in p˚q anel out, for example if m is an

odd divisor of n ` 1. In suh ases, deg f an be less than npm ´ 1q.

Comment 3. The lemma is losely related to the so-alled

Alon�Füredi bound. Let S1, . . . , Sn be nonempty �nite sets in a �eld and suppose that

the polynomial P px1, . . . , xnq vanishes at the points of the grid S1 ˆ . . . ˆ Sn, exept for a

single point. Then degP ě
nř

i“1

`
|Si| ´ 1

˘
.

(A well-known appliation of the Alon�Füredi bound was the former IMO problem 2007/6.

Sine then, this result beame popular among the students and is part of the IMO training

for many IMO teams.)

The proof of the lemma an be replaed by an appliation of the Alon�Füredi bound as follows. Let

d “ degG, and let G0 be the unique polynomial suh that G0pxq “ Gpxq for x P
 
0, 1, . . . , d ´ 1

(
but

degG0 ă d. The polynomials G0 and G are di�erent beause they have di�erent degrees, and they

attain the same values at 0, 1, . . . , d ´ 1; that enfores G0pdq ‰ Gpdq.
Choose some nonnegative integers b1, . . . , bn so that b1 ď a1, . . . , bn ď an, and b1 ` . . . ` bn “ d,

and onsider the polynomial

Hpx1, . . . , xnq “ F px1, . . . , xnq ´ G0px1 ` . . . ` xnq

on the grid

 
0, 1, . . . , b1

(
ˆ . . . ˆ

 
0, 1, . . . , bn

(
.

At the point pb1, . . . , bnq we have Hpb1, . . . , bnq “ Gpdq ´ G0pdq ‰ 0. At all other points of the grid

we have F “ G and thereforeH “ G´G0 “ 0. So, by the Alon�Füredi bound, degH ě b1`. . .`bn “ d.

Sine degG0 ă d, this implies degF “ degpH ` G0q “ degH ě d “ degG. l
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A7.

Find the maximal value of

S “ 3

c
a

b ` 7
` 3

c
b

c ` 7
` 3

c
c

d ` 7
` 3

c
d

a ` 7
,

where a, b, c, d are nonnegative real numbers whih satisfy a ` b ` c ` d “ 100.

(Taiwan)

Answer:

8
3
?
7
, reahed when pa, b, c, dq is a yli permutation of p1, 49, 1, 49q.

Solution 1. Sine the value 8{ 3
?
7 is reahed, it su�es to prove that S ď 8{ 3

?
7.

Assume that x, y, z, t is a permutation of the variables, with x ď y ď z ď t. Then, by the

rearrangement inequality,

S ď
˜

3

c
x

t ` 7
` 3

c
t

x ` 7

¸

`
ˆ

3

c
y

z ` 7
` 3

c
z

y ` 7

˙
.

Claim. The �rst braket above does not exeed

3

c
x ` t ` 14

7
.

Proof. Sine

X3 ` Y 3 ` 3XY Z ´ Z3 “ 1

2
pX ` Y ´ Zq

`
pX ´ Y q2 ` pX ` Zq2 ` pY ` Zq2

˘
,

the inequality X ` Y ď Z is equivalent (when X, Y, Z ě 0) to X3 ` Y 3 ` 3XY Z ď Z3
.

Therefore, the laim is equivalent to

x

t ` 7
` t

x ` 7
` 3

3

d
xtpx ` t ` 14q
7px ` 7qpt ` 7q ď x ` t ` 14

7
.

Notie that

3
3

d
xtpx ` t ` 14q
7px ` 7qpt ` 7q “ 3

3

d
tpx ` 7q
7pt ` 7q ¨ xpt ` 7q

7px ` 7q ¨ 7px ` t ` 14q
pt ` 7qpx ` 7q

ď tpx ` 7q
7pt ` 7q ` xpt ` 7q

7px ` 7q ` 7px ` t ` 14q
pt ` 7qpx ` 7q

by the AM�GM inequality, so it su�es to prove

x

t ` 7
` t

x ` 7
` tpx ` 7q

7pt ` 7q ` xpt ` 7q
7px ` 7q ` 7px ` t ` 14q

pt ` 7qpx ` 7q ď x ` t ` 14

7
.

A straightforward hek veri�es that the last inequality is in fat an equality. l

The laim leads now to

S ď 3

c
x ` t ` 14

7
` 3

c
y ` z ` 14

7
ď 2

3

c
x ` y ` z ` t ` 28

14
“ 8

3
?
7
,

the last inequality being due to the AM�CM inequality (or to the fat that

3
?

is onave on

r0,8q).
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Solution 2. We present a di�erent proof for the estimate S ď 8{ 3
?
7.

Start by using Hölder's inequality:

S3 “
˜
ÿ

cyc

6
?
a ¨ 6

?
a

3
?
b ` 7

¸3

ď
ÿ

cyc

`
6
?
a
˘3 ¨

ÿ

cyc

`
6
?
a
˘3 ¨

ÿ

cyc

ˆ
1

3
?
b ` 7

˙3

“
˜
ÿ

cyc

?
a

¸2ÿ

cyc

1

b ` 7
.

Notie that

px ´ 1q2px ´ 7q2
x2 ` 7

ě 0 ðñ x2 ´ 16x ` 71 ě 448

x2 ` 7

yields

ÿ 1

b ` 7
ď 1

448

ÿ`
b ´ 16

?
b ` 71

˘
“ 1

448

´
384 ´ 16

ÿ?
b
¯

“ 48 ´ 2
ř?

b

56
.

Finally,

S3 ď 1

56

´ÿ?
a
¯2 ´

48 ´ 2
ÿ?

a
¯

ď 1

56

˜ř?
a ` ř?

a `
`
48 ´ 2

ř?
a
˘

3

¸3

“ 512

7

by the AM�GM inequality. The onlusion follows.

Comment. All the above works if we replae 7 and 100 with k ą 0 and 2pk2 ` 1q, respetively; in this

ase, the answer beomes

2
3

c
pk ` 1q2

k
.

Even further, a linear substitution allows to extend the solutions to a version with 7 and 100 being

replaed with arbitrary positive real numbers p and q satisfying q ě 4p.
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Combinatoris

C1.

Let n ě 3 be an integer. Prove that there exists a set S of 2n positive integers

satisfying the following property: For every m “ 2, 3, . . . , n the set S an be partitioned into

two subsets with equal sums of elements, with one of subsets of ardinality m.

(Ieland)

Solution. We show that one of possible examples is the set

S “ t1 ¨ 3k, 2 ¨ 3k : k “ 1, 2, . . . , n ´ 1u Y
"
1,

3n ` 9

2
´ 1

*
.

It is readily veri�ed that all the numbers listed above are distint (notie that the last two are

not divisible by 3).

The sum of elements in S is

Σ “ 1 `
ˆ
3n ` 9

2
´ 1

˙
`

n´1ÿ

k“1

p1 ¨ 3k ` 2 ¨ 3kq “ 3n ` 9

2
`

n´1ÿ

k“1

3k`1 “ 3n ` 9

2
` 3n`1 ´ 9

2
“ 2 ¨ 3n.

Hene, in order to show that this set satis�es the problem requirements, it su�es to present,

for every m “ 2, 3, . . . , n, an m-element subset Am Ă S whose sum of elements equals 3n.

Suh a subset is

Am “ t2 ¨ 3k : k “ n ´ m ` 1, n ´ m ` 2, . . . , n ´ 1u Y t1 ¨ 3n´m`1u.

Clearly, |Am| “ m. The sum of elements in Am is

3n´m`1 `
n´1ÿ

k“n´m`1

2 ¨ 3k “ 3n´m`1 ` 2 ¨ 3n ´ 2 ¨ 3n´m`1

2
“ 3n,

as required.

Comment. Let us present a more general onstrution. Let s1, s2, . . . , s2n´1 be a sequene of pairwise

distint positive integers satisfying s2i`1 “ s2i ` s2i´1 for all i “ 2, 3, . . . , n ´ 1. Set s2n “ s1 ` s2 `
¨ ¨ ¨ ` s2n´4.

Assume that s2n is distint from the other terms of the sequene. Then the set S “ ts1, s2, . . . , s2nu
satis�es the problem requirements. Indeed, the sum of its elements is

Σ “
2n´4ÿ

i“1

si ` ps2n´3 ` s2n´2q ` s2n´1 ` s2n “ s2n ` s2n´1 ` s2n´1 ` s2n “ 2s2n ` 2s2n´1.

Therefore, we have

Σ

2
“ s2n ` s2n´1 “ s2n ` s2n´2 ` s2n´3 “ s2n ` s2n´2 ` s2n´4 ` s2n´5 “ . . . ,

whih shows that the required sets Am an be hosen as

Am “ ts2n, s2n´2, . . . , s2n´2m`4, s2n´2m`3u.

So, the only ondition to be satis�ed is s2n R ts1, s2, . . . , s2n´1u, whih an be ahieved in many

di�erent ways (e.g., by hoosing properly the number s1 after speifying s2, s3, . . . , s2n´1).

The solution above is an instane of this general onstrution. Another instane, for n ą 3, is the

set

tF1, F2, . . . , F2n´1, F1 ` ¨ ¨ ¨ ` F2n´4u,
where F1 “ 1, F2 “ 2, Fn`1 “ Fn ` Fn´1 is the usual Fibonai sequene.
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C2.

Queenie and Horst play a game on a 20 ˆ 20 hessboard. In the beginning the board

is empty. In every turn, Horst plaes a blak knight on an empty square in suh a way that his

new knight does not attak any previous knights. Then Queenie plaes a white queen on an

empty square. The game gets �nished when somebody annot move.

Find the maximal positive K suh that, regardless of the strategy of Queenie, Horst an

put at least K knights on the board.

(Armenia)

Answer: K “ 202{4 “ 100. In ase of a 4N ˆ 4M board, the answer is K “ 4NM .

Solution. We show two strategies, one for Horst to plae at least 100 knights, and another

strategy for Queenie that prevents Horst from putting more than 100 knights on the board.

A strategy for Horst: Put knights only on blak squares, until all blak squares get

oupied.

Colour the squares of the board blak and white in the usual way, suh that the white

and blak squares alternate, and let Horst put his knights on blak squares as long as it is

possible. Two knights on squares of the same olour never attak eah other. The number of

blak squares is 202{2 “ 200. The two players oupy the squares in turn, so Horst will surely

�nd empty blak squares in his �rst 100 steps.

A strategy for Queenie: Group the squares into yles of length 4, and after eah step

of Horst, oupy the opposite square in the same yle.

Consider the squares of the board as verties of a graph; let two squares be onneted if

two knights on those squares would attak eah other. Notie that in a 4ˆ 4 board the squares

an be grouped into 4 yles of length 4, as shown in Figure 1. Divide the board into parts of

size 4 ˆ 4, and perform the same grouping in every part; this way we arrange the 400 squares

of the board into 100 yles (Figure 2).

D

B

A C

Figure 1 Figure 2 Figure 3

The strategy of Queenie an be as follows: Whenever Horst puts a new knight to a ertain

square A, whih is part of some yle A ´ B ´ C ´ D ´ A, let Queenie put her queen on the

opposite square C in that yle (Figure 3). From this point, Horst annot put any knight on

A or C beause those squares are already oupied, neither on B or D beause those squares

are attaked by the knight standing on A. Hene, Horst an put at most one knight on eah

yle, that is at most 100 knights in total.

Comment 1. Queenie's strategy an be presribed by a simple rule: divide the board into 4 ˆ 4

parts; whenever Horst puts a knight in a part P , Queenie re�ets that square about the entre of P

and puts her queen on the re�eted square.

Comment 2. The result remains the same if Queenie moves �rst. In the �rst turn, she may put

her �rst queen arbitrarily. Later, if she has to put her next queen on a square that already ontains a

queen, she may move arbitrarily again.
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C3.

Let n be a given positive integer. Sisyphus performs a sequene of turns on a board

onsisting of n ` 1 squares in a row, numbered 0 to n from left to right. Initially, n stones

are put into square 0, and the other squares are empty. At every turn, Sisyphus hooses any

nonempty square, say with k stones, takes one of those stones and moves it to the right by at

most k squares (the stone should stay within the board). Sisyphus' aim is to move all n stones

to square n.

Prove that Sisyphus annot reah the aim in less than

Qn
1

U
`
Qn
2

U
`
Qn
3

U
` ¨ ¨ ¨ `

Qn
n

U

turns. (As usual, rxs stands for the least integer not smaller than x.)

(Netherlands)

Solution. The stones are indistinguishable, and all have the same origin and the same �nal

position. So, at any turn we an presribe whih stone from the hosen square to move. We

do it in the following manner. Number the stones from 1 to n. At any turn, after hoosing a

square, Sisyphus moves the stone with the largest number from this square.

This way, when stone k is moved from some square, that square ontains not more than k

stones (sine all their numbers are at most k). Therefore, stone k is moved by at most k squares

at eah turn. Sine the total shift of the stone is exatly n, at least rn{ks moves of stone k

should have been made, for every k “ 1, 2, . . . , n.

By summing up over all k “ 1, 2, . . . , n, we get the required estimate.

Comment. The original submission ontained the seond part, asking for whih values of n the equality

an be ahieved. The answer is n “ 1, 2, 3, 4, 5, 7. The Problem Seletion Committee onsidered this

part to be less suitable for the ompetition, due to tehnialities.
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C4.

An anti-Pasal pyramid is a �nite set of numbers, plaed in a triangle-shaped array

so that the �rst row of the array ontains one number, the seond row ontains two numbers,

the third row ontains three numbers and so on; and, exept for the numbers in the bottom

row, eah number equals the absolute value of the di�erene of the two numbers below it. For

instane, the triangle below is an anti-Pasal pyramid with four rows, in whih every integer

from 1 to 1 ` 2 ` 3 ` 4 “ 10 ours exatly one:

4

2 6

5 7 1

8 3 10 9 .

Is it possible to form an anti-Pasal pyramid with 2018 rows, using every integer from 1 to

1 ` 2 ` ¨ ¨ ¨ ` 2018 exatly one?

(Iran)

Answer: No, it is not possible.

Solution. Let T be an anti-Pasal pyramid with n rows, ontaining every integer from 1 to

1`2`¨ ¨ ¨`n, and let a1 be the topmost number in T (Figure 1). The two numbers below a1 are

some a2 and b2 “ a1 ` a2, the two numbers below b2 are some a3 and b3 “ a1 ` a2 ` a3, and so

on and so forth all the way down to the bottom row, where some an and bn “ a1 `a2 ` ¨ ¨ ¨ `an
are the two neighbours below bn´1 “ a1 ` a2 ` ¨ ¨ ¨ ` an´1. Sine the ak are n pairwise distint

positive integers whose sum does not exeed the largest number in T , whih is 1 ` 2 ` ¨ ¨ ¨ ` n,

it follows that they form a permutation of 1, 2, . . . , n.

a
1

a
2

b
2

an-1

bn

a
3

b
3

bn-1

an

..................
T

T’ T’’

Figure 1 Figure 2

Consider now (Figure 2) the two `equilateral' subtriangles of T whose bottom rows ontain

the numbers to the left, respetively right, of the pair an, bn. (One of these subtriangles may

very well be empty.) At least one of these subtriangles, say T 1
, has side length ℓ ě rpn ´ 2q{2s.

Sine T 1
obeys the anti-Pasal rule, it ontains ℓ pairwise distint positive integers a1

1, a
1
2, . . . , a

1
ℓ,

where a1
1 is at the apex, and a1

k and b1
k “ a1

1 `a1
2 `¨ ¨ ¨`a1

k are the two neighbours below b1
k´1 for

eah k “ 2, 3 . . . , ℓ. Sine the ak all lie outside T 1
, and they form a permutation of 1, 2, . . . , n,

the a1
k are all greater than n. Consequently,

b1
ℓ ě pn ` 1q ` pn ` 2q ` ¨ ¨ ¨ ` pn ` ℓq “ ℓp2n ` ℓ ` 1q

2

ě 1

2
¨ n ´ 2

2

ˆ
2n ` n ´ 2

2
` 1

˙
“ 5npn ´ 2q

8
,

whih is greater than 1 ` 2 ` ¨ ¨ ¨ ` n “ npn ` 1q{2 for n “ 2018. A ontradition.

Comment. The above estimate may be slightly improved by notiing that b1
ℓ ‰ bn. This implies

npn ` 1q{2 “ bn ą b1
ℓ ě rpn ´ 2q{2s p2n ` rpn ´ 2q{2s ` 1q {2, so n ď 7 if n is odd, and n ď 12 if n is

even. It seems that the largest anti-Pasal pyramid whose entries are a permutation of the integers

from 1 to 1 ` 2 ` ¨ ¨ ¨ ` n has 5 rows.
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C5.

Let k be a positive integer. The organising ommittee of a tennis tournament is to

shedule the mathes for 2k players so that every two players play one, eah day exatly one

math is played, and eah player arrives to the tournament site the day of his �rst math, and

departs the day of his last math. For every day a player is present on the tournament, the

ommittee has to pay 1 oin to the hotel. The organisers want to design the shedule so as to

minimise the total ost of all players' stays. Determine this minimum ost.

(Russia)

Answer: The required minimum is kp4k2 ` k ´ 1q{2.
Solution 1. Enumerate the days of the tournament 1, 2, . . . ,

`
2k

2

˘
. Let b1 ď b2 ď ¨ ¨ ¨ ď b2k be

the days the players arrive to the tournament, arranged in nondereasing order; similarly, let

e1 ě ¨ ¨ ¨ ě e2k be the days they depart arranged in noninreasing order (it may happen that a

player arrives on day bi and departs on day ej , where i ‰ j). If a player arrives on day b and

departs on day e, then his stay ost is e ´ b ` 1. Therefore, the total stay ost is

Σ “
2kÿ

i“1

ei ´
2kÿ

i“1

bi ` n “
2kÿ

i“1

pei ´ bi ` 1q.

Bounding the total ost from below. To this end, estimate ei`1 ´ bi`1 ` 1. Before day bi`1,

only i players were present, so at most

`
i

2

˘
mathes ould be played. Therefore, bi`1 ď

`
i

2

˘
` 1.

Similarly, at most

`
i

2

˘
mathes ould be played after day ei`1, so ei ě

`
2k

2

˘
´
`
i

2

˘
. Thus,

ei`1 ´ bi`1 ` 1 ě
ˆ
2k

2

˙
´ 2

ˆ
i

2

˙
“ kp2k ´ 1q ´ ipi ´ 1q.

This lower bound an be improved for i ą k : List the i players who arrived �rst, and

the i players who departed last; at least 2i ´ 2k players appear in both lists. The mathes

between these players were ounted twie, though the players in eah pair have played only

one. Therefore, if i ą k, then

ei`1 ´ bi`1 ` 1 ě
ˆ
2k

2

˙
´ 2

ˆ
i

2

˙
`
ˆ
2i ´ 2k

2

˙
“ p2k ´ iq2.

An optimal tournament, We now desribe a shedule in whih the lower bounds above are all

ahieved simultaneously. Split players into two groups X and Y , eah of ardinality k. Next,

partition the shedule into three parts. During the �rst part, the players from X arrive one by

one, and eah newly arrived player immediately plays with everyone already present. During

the third part (after all players from X have already departed) the players from Y depart one

by one, eah playing with everyone still present just before departing.

In the middle part, everyone from X should play with everyone from Y . Let S1, S2, . . . , Sk

be the players in X , and let T1, T2, . . . , Tk be the players in Y . Let T1, T2, . . . , Tk arrive in

this order; after Tj arrives, he immediately plays with all the Si, i ą j. Afterwards, players Sk,

Sk´1, . . . , S1 depart in this order; eah Si plays with all the Tj , i ď j, just before his departure,

and Sk departs the day Tk arrives. For 0 ď s ď k ´ 1, the number of mathes played between

Tk´s's arrival and Sk´s's departure is

k´1ÿ

j“k´s

pk ´ jq ` 1 `
k´1ÿ

j“k´s

pk ´ j ` 1q “ 1

2
sps ` 1q ` 1 ` 1

2
sps ` 3q “ ps ` 1q2.

Thus, if i ą k, then the number of mathes that have been played between Ti´k`1's arrival,

whih is bi`1, and Si´k`1's departure, whih is ei`1, is p2k´iq2; that is, ei`1´bi`1`1 “ p2k´iq2,
showing the seond lower bound ahieved for all i ą k.
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If i ď k, then the mathes between the i players present before bi`1 all fall in the �rst part

of the shedule, so there are

`
i

2

˘
suh, and bi`1 “

`
i

2

˘
` 1. Similarly, after ei`1, there are i

players left, all

`
i

2

˘
mathes now fall in the third part of the shedule, and ei`1 “

`
2k

2

˘
´
`
i

2

˘
.

The �rst lower bound is therefore also ahieved for all i ď k.

Consequently, all lower bounds are ahieved simultaneously, and the shedule is indeed

optimal.

Evaluation. Finally, evaluate the total ost for the optimal shedule:

Σ “
kÿ

i“0

`
kp2k ´ 1q ´ ipi ´ 1q

˘
`

2k´1ÿ

i“k`1

p2k ´ iq2 “ pk ` 1qkp2k ´ 1q ´
kÿ

i“0

ipi ´ 1q `
k´1ÿ

j“1

j2

“ kpk ` 1qp2k ´ 1q ´ k2 ` 1

2
kpk ` 1q “ 1

2
kp4k2 ` k ´ 1q.

Solution 2. Consider any tournament shedule. Label players P1, P2, . . . , P2k in order of

their arrival, and label them again Q2k, Q2k´1, . . ., Q1 in order of their departure, to de�ne a

permutation a1, a2, . . . , a2k of 1, 2, . . . , 2k by Pi “ Qai .

We �rst desribe an optimal tournament for any given permutation a1, a2, . . . , a2k of the

indies 1, 2, . . . , 2k. Next, we �nd an optimal permutation and an optimal tournament.

Optimisation for a �xed a1, . . . , a2k. We say that the ost of the math between Pi and Pj

is the number of players present at the tournament when this math is played. Clearly, the

Committee pays for eah day the ost of the math of that day. Hene, we are to minimise the

total ost of all mathes.

Notie that Q2k's departure does not preede P2k's arrival. Hene, the number of play-

ers at the tournament monotonially inreases (non-stritly) until it reahes 2k, and then

monotonially dereases (non-stritly). So, the best time to shedule the math between Pi

and Pj is either when Pmaxpi,jq arrives, or when Qmaxpai,ajq departs, in whih ase the ost is

min
`
maxpi, jq,maxpai, ajq

˘
.

Conversely, assuming that i ą j, if this math is sheduled between the arrivals of Pi and

Pi`1, then its ost will be exatly i “ maxpi, jq. Similarly, one an make it ost maxpai, ajq.
Obviously, these onditions an all be simultaneously satis�ed, so the minimal ost for a �xed

sequene a1, a2, . . . , a2k is

Σpa1, . . . , a2kq “
ÿ

1ďiăjď2k

min
`
maxpi, jq,maxpai, ajq

˘
. (1)

Optimising the sequene paiq. Optimisation hinges on the lemma below.

Lemma. If a ď b and c ď d, then

min
`
maxpa, xq,maxpc, yq

˘
` min

`
maxpb, xq,maxpd, yq

˘

ě min
`
maxpa, xq,maxpd, yq

˘
` min

`
maxpb, xq,maxpc, yq

˘
.

Proof. Write a1 “ maxpa, xq ď maxpb, xq “ b1
and c1 “ maxpc, yq ď maxpd, yq “ d1

and hek

that minpa1, c1q ` minpb1, d1q ě minpa1, d1q ` minpb1, c1q. l

Consider a permutation a1, a2, . . . , a2k suh that ai ă aj for some i ă j. Swapping ai
and aj does not hange the pi, jqth summand in (1), and for ℓ R ti, ju the sum of the pi, ℓqth
and the pj, ℓqth summands does not inrease by the Lemma. Hene the optimal value does not

inrease, but the number of disorders in the permutation inreases. This proess stops when

ai “ 2k ` 1 ´ i for all i, so the required minimum is

Sp2k, 2k ´ 1, . . . , 1q “
ÿ

1ďiăjď2k

min
`
maxpi, jq,maxp2k ` 1 ´ i, 2k ` 1 ´ jq

˘

“
ÿ

1ďiăjď2k

minpj, 2k ` 1 ´ iq.
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The latter sum is fairly tratable and yields the stated result; we omit the details.

Comment. If the number of players is odd, say, 2k ´ 1, the required minimum is kpk ´ 1qp4k ´ 1q{2.
In this ase, |X| “ k, |Y | “ k ´ 1, the argument goes along the same lines, but some additional

tehnialities are to be taken are of.
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C6.

Let a and b be distint positive integers. The following in�nite proess takes plae on

an initially empty board.

piq If there is at least a pair of equal numbers on the board, we hoose suh a pair and

inrease one of its omponents by a and the other by b.

piiq If no suh pair exists, we write down two times the number 0.

Prove that, no matter how we make the hoies in piq, operation piiq will be performed only

�nitely many times.

(Serbia)

Solution 1. We may assume gcdpa, bq “ 1; otherwise we work in the same way with multiples

of d “ gcdpa, bq.
Suppose that after N moves of type piiq and some moves of type piq we have to add two

new zeros. For eah integer k, denote by fpkq the number of times that the number k appeared

on the board up to this moment. Then fp0q “ 2N and fpkq “ 0 for k ă 0. Sine the board

ontains at most one k ´ a, every seond ourrene of k ´ a on the board produed, at some

moment, an ourrene of k; the same stands for k ´ b. Therefore,

fpkq “
Z
fpk ´ aq

2

^
`
Z
fpk ´ bq

2

^
, p1q

yielding

fpkq ě fpk ´ aq ` fpk ´ bq
2

´ 1. p2q

Sine gcdpa, bq “ 1, every integer x ą ab ´ a ´ b is expressible in the form x “ sa ` tb, with

integer s, t ě 0.

We will prove by indution on s ` t that if x “ sa ` bt, with s, t nonnegative integers, then

fpxq ą fp0q
2s`t

´ 2. p3q

The base ase s`t “ 0 is trivial. Assume now that p3q is true for s`t “ v. Then, if s`t “ v`1

and x “ sa ` tb, at least one of the numbers s and t � say s � is positive, hene by p2q,

fpxq “ fpsa ` tbq ě f
`
ps ´ 1qa ` tb

˘

2
´ 1 ą 1

2

ˆ
fp0q
2s`t´1

´ 2

˙
´ 1 “ fp0q

2s`t
´ 2.

Assume now that we must perform moves of type piiq ad in�nitum. Take n “ ab´a´ b and

suppose b ą a. Sine eah of the numbers n ` 1, n ` 2, . . . , n ` b an be expressed in the form

sa ` tb, with 0 ď s ď b and 0 ď t ď a, after moves of type piiq have been performed 2a`b`1

times and we have to add a new pair of zeros, eah fpn ` kq, k “ 1, 2, . . . , b, is at least 2. In

this ase p1q yields indutively fpn ` kq ě 2 for all k ě 1. But this is absurd: after a �nite

number of moves, f annot attain nonzero values at in�nitely many points.

Solution 2. We start by showing that the result of the proess in the problem does not

depend on the way the operations are performed. For that purpose, it is onvenient to modify

the proess a bit.

Claim 1. Suppose that the board initially ontains a �nite number of nonnegative integers,

and one starts performing type piq moves only. Assume that one had applied k moves whih led

to a �nal arrangement where no more type piq moves are possible. Then, if one starts from the

same initial arrangement, performing type piq moves in an arbitrary fashion, then the proess

will neessarily stop at the same �nal arrangement
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Proof. Throughout this proof, all moves are supposed to be of type piq.
Indut on k; the base ase k “ 0 is trivial, sine no moves are possible. Assume now that

k ě 1. Fix some anonial proess, onsisting of k moves M1,M2, . . . ,Mk, and reahing the

�nal arrangement A. Consider any sample proess m1, m2, . . . starting with the same initial

arrangement and proeeding as long as possible; learly, it ontains at least one move. We need

to show that this proess stops at A.

Let move m1 onsist in replaing two opies of x with x ` a and x ` b. If move M1 does

the same, we may apply the indution hypothesis to the arrangement appearing after m1.

Otherwise, the anonial proess should still ontain at least one move onsisting in replaing

px, xq ÞÑ px ` a, x ` bq, beause the initial arrangement ontains at least two opies of x, while

the �nal one ontains at most one suh.

Let Mi be the �rst suh move. Sine the opies of x are indistinguishable and no other opy

of x disappeared before Mi in the anonial proess, the moves in this proess an be permuted

as Mi,M1, . . . ,Mi´1,Mi`1, . . . ,Mk, without a�eting the �nal arrangement. Now it su�es to

perform the move m1 “ Mi and apply the indution hypothesis as above. l

Claim 2. Consider any proess starting from the empty board, whih involved exatly n moves

of type piiq and led to a �nal arrangement where all the numbers are distint. Assume that

one starts with the board ontaining 2n zeroes (as if n moves of type piiq were made in the

beginning), applying type piq moves in an arbitrary way. Then this proess will reah the same

�nal arrangement.

Proof. Starting with the board with 2n zeros, one may indeed model the �rst proess mentioned

in the statement of the laim, omitting the type piiq moves. This way, one reahes the same

�nal arrangement. Now, Claim 1 yields that this �nal arrangement will be obtained when

type piq moves are applied arbitrarily. l

Claim 2 allows now to reformulate the problem statement as follows: There exists an integer

n suh that, starting from 2n zeroes, one may apply type piq moves inde�nitely.

In order to prove this, we start with an obvious indution on s ` t “ k ě 1 to show that if

we start with 2s`t
zeros, then we an get simultaneously on the board, at some point, eah of

the numbers sa ` tb, with s ` t “ k.

Suppose now that a ă b. Then, an appropriate use of separate groups of zeros allows us to

get two opies of eah of the numbers sa ` tb, with 1 ď s, t ď b.

De�ne N “ ab´a´b, and notie that after representing eah of numbers N`k, 1 ď k ď b, in

the form sa`tb, 1 ď s, t ď b we an get, using enough zeros, the numbers N`1, N`2, . . . , N`a

and the numbers N ` 1, N ` 2, . . . , N ` b.

From now on we an perform only moves of type piq. Indeed, if n ě N , the ourrene of the

numbers n` 1, n` 2, . . . , n` a and n` 1, n` 2, . . . , n` b and the replaement pn` 1, n` 1q ÞÑ
pn ` b ` 1, n ` a ` 1q leads to the ourrene of the numbers n ` 2, n ` 3, . . . , n ` a ` 1 and

n ` 2, n ` 3, . . . , n ` b ` 1.

Comment. The proofs of Claims 1 and 2 may be extended in order to show that in fat the number

of moves in the anonial proess is the same as in an arbitrary sample one.
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C7.

Consider 2018 pairwise rossing irles no three of whih are onurrent. These irles

subdivide the plane into regions bounded by irular edges that meet at verties. Notie that

there are an even number of verties on eah irle. Given the irle, alternately olour the

verties on that irle red and blue. In doing so for eah irle, every vertex is oloured twie �

one for eah of the two irles that ross at that point. If the two olourings agree at a vertex,

then it is assigned that olour; otherwise, it beomes yellow. Show that, if some irle ontains

at least 2061 yellow points, then the verties of some region are all yellow.

(India)

Solution 1. Letting n “ 2018, we will show that, if every region has at least one non-yellow

vertex, then every irle ontains at most n ` t
?
n ´ 2u ´ 2 yellow points. In the ase at hand,

the latter equals 2018 ` 44 ´ 2 “ 2060, ontraditing the hypothesis.

Consider the natural geometri graph G assoiated with the on�guration of n irles. Fix

any irle C in the on�guration, let k be the number of yellow points on C, and �nd a suitable

lower bound for the total number of yellow verties of G in terms of k and n. It turns out that

k is even, and G has at least

k ` 2

ˆ
k{2
2

˙
` 2

ˆ
n ´ k{2 ´ 1

2

˙
“ k2

2
´ pn ´ 2qk ` pn ´ 2qpn ´ 1q p˚q

yellow verties. The proof hinges on the two lemmata below.

Lemma 1. Let two irles in the on�guration ross at x and y. Then x and y are either both

yellow or both non-yellow.

Proof. This is beause the numbers of interior verties on the four ars x and y determine on

the two irles have like parities. l

In partiular, eah irle in the on�guration ontains an even number of yellow verties.

Lemma 2. If Ňxy, Ňyz, and Ňzx are irular ars of three pairwise distint irles in the on�gu-

ration, then the number of yellow verties in the set tx, y, zu is odd.

Proof. Let C1, C2, C3 be the three irles under onsideration. Assume, without loss of gen-

erality, that C2 and C3 ross at x, C3 and C1 ross at y, and C1 and C2 ross at z. Let k1,

k2, k3 be the numbers of interior verties on the three irular ars under onsideration. Sine

eah irle in the on�guration, di�erent from the Ci, rosses the yle Ňxy YŇyz Y Ňzx at an even

number of points (reall that no three irles are onurrent), and self-rossings are ounted

twie, the sum k1 ` k2 ` k3 is even.

Let Z1 be the olour z gets from C1 and de�ne the other olours similarly. By the preeding,

the number of bihromati pairs in the list pZ1, Y1q, pX2, Z2q, pY3, X3q is odd. Sine the total

number of olour hanges in a yle Z1�Y1�Y3�X3�X2�Z2�Z1 is even, the number of bihromati

pairs in the list pX2, X3q, pY1, Y3q, pZ1, Z2q is odd, and the lemma follows. l

We are now in a position to prove that p˚q bounds the total number of yellow verties from

below. Refer to Lemma 1 to infer that the k yellow verties on C pair o� to form the pairs of

points where C is rossed by k{2 irles in the on�guration. By Lemma 2, these irles ross

pairwise to aount for another 2
`
k{2
2

˘
yellow verties. Finally, the remaining n´k{2´ 1 irles

in the on�guration ross C at non-yellow verties, by Lemma 1, and Lemma 2 applies again

to show that these irles ross pairwise to aount for yet another 2
`
n´k{2´1

2

˘
yellow verties.

Consequently, there are at least p˚q yellow verties.

Next, notie that G is a plane graph on npn´ 1q degree 4 verties, having exatly 2npn´ 1q
edges and exatly npn ´ 1q ` 2 faes (regions), the outer fae inlusive (by Euler's formula for

planar graphs).

Lemma 3. Eah fae of G has equally many red and blue verties. In partiular, eah fae has

an even number of non-yellow verties.
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Proof. Trae the boundary of a fae one in irular order, and onsider the olours eah vertex

is assigned in the olouring of the two irles that ross at that vertex, to infer that olours of

non-yellow verties alternate. l

Consequently, if eah region has at least one non-yellow vertex, then it has at least two suh.

Sine eah vertex of G has degree 4, onsideration of vertex-fae inidenes shows that G has

at least npn´1q{2`1 non-yellow verties, and hene at most npn´1q{2´1 yellow verties. (In

fat, Lemma 3 shows that there are at least npn ´ 1q{4 ` 1{2 red, respetively blue, verties.)

Finally, reall the lower bound p˚q for the total number of yellow verties in G, to write

npn ´ 1q{2 ´ 1 ě k2{2 ´ pn ´ 2qk ` pn ´ 2qpn ´ 1q, and onlude that k ď n ` t
?
n ´ 2u ´ 2, as

laimed in the �rst paragraph.

Solution 2. The �rst two lemmata in Solution 1 show that the irles in the on�guration

split into two lasses: Consider any irle C along with all irles that ross C at yellow points

to form one lass; the remaining irles then form the other lass. Lemma 2 shows that any pair

of irles in the same lass ross at yellow points; otherwise, they ross at non-yellow points.

Call the irles from the two lasses white and blak, respetively. Call a region yellow if

its verties are all yellow. Let w and b be the numbers of white and blak irles, respetively;

learly, w ` b “ n. Assume that w ě b, and that there is no yellow region. Clearly, b ě 1,

otherwise eah region is yellow. The white irles subdivide the plane into wpw ´ 1q ` 2 larger

regions � all them white. The white regions (or rather their boundaries) subdivide eah blak

irle into blak ars. Sine there are no yellow regions, eah white region ontains at least one

blak ar.

Consider any white region; let it ontain t ě 1 blak ars. We laim that the number of

points at whih these t ars ross does not exeed t ´ 1. To prove this, onsider a multigraph

whose verties are these blak ars, two verties being joined by an edge for eah point at whih

the orresponding ars ross. If this graph had more than t´ 1 edges, it would ontain a yle,

sine it has t verties; this yle would orrespond to a losed ontour formed by blak sub-ars,

lying inside the region under onsideration. This ontour would, in turn, de�ne at least one

yellow region, whih is impossible.

Let ti be the number of blak ars inside the ithwhite region. The total number of blak

ars is

ř
i ti “ 2wb, and they ross at 2

`
b

2

˘
“ bpb ´ 1q points. By the preeding,

bpb ´ 1q ď
w2´w`2ÿ

i“1

pti ´ 1q “
w2´w`2ÿ

i“1

ti ´ pw2 ´ w ` 2q “ 2wb ´ pw2 ´ w ` 2q,

or, equivalently, pw´ bq2 ď w ` b´ 2 “ n´ 2, whih is the ase if and only if w´ b ď t
?
n ´ 2u.

Consequently, b ď w ď
`
n ` t

?
n ´ 2u

˘
{2, so there are at most 2pw ´ 1q ď n ` t

?
n ´ 2u ´ 2

yellow verties on eah irle � a ontradition.



36 Cluj-Napoa � Romania, 3�14 July 2018

Geometry

G1.

Let ABC be an aute-angled triangle with irumirle Γ. Let D and E be points on

the segments AB and AC, respetively, suh that AD “ AE. The perpendiular bisetors of

the segments BD and CE interset the small ars

ŊAB and

ŊAC at points F and G respetively.

Prove that DE ‖ FG.

(Greee)

Solution 1. In the sequel, all the onsidered ars are small ars.

Let P be the midpoint of the ar

ŊBC. Then AP is the bisetor of =BAC, hene, in the

isoseles triangleADE, AP K DE. So, the statement of the problem is equivalent to AP K FG.

In order to prove this, let K be the seond intersetion of Γ with FD. Then the triangle

FBD is isoseles, therefore

=AKF “ =ABF “ =FDB “ =ADK,

yielding AK “ AD. In the same way, denoting by L the seond intersetion of Γ with GE, we

get AL “ AE. This shows that AK “ AL.

A

B C
P

D
E

F

G

K

L

Now =FBD “ =FDB gives

ŊAF “ ŊBF ` ŊAK “ ŊBF ` ŇAL, hene ŊBF “ ŇLF . In a similar

way, we get

ŊCG “ ŊGK. This yields

=pAP, FGq “
ŊAF ` ŊPG

2
“

ŇAL ` ŇLF ` ŊPC ` ŊCG

2
“

ŊKL ` ŊLB ` ŊBC ` ŊCK

4
“ 90˝.

Solution 2. Let Z “ AB X FG, T “ AC X FG. It su�es to prove that =ATZ “ =AZT .

Let X be the point for whih FXAD is a parallelogram. Then

=FXA “ =FDA “ 180˝ ´ =FDB “ 180˝ ´ =FBD,

where in the last equality we used that FD “ FB. It follows that the quadrilateral BFXA is

yli, so X lies on Γ.

A

X
F

B

C

G

Y

TE

D
Z
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Analogously, if Y is the point for whih GY AE is a parallelogram, then Y lies on Γ. So

the quadrilateral XFGY is yli and FX “ AD “ AE “ GY , hene XFGY is an isoseles

trapezoid.

Now, by XF ‖ AZ and Y G ‖ AT , it follows that =ATZ “ =Y GF “ =XFG “ =AZT .

Solution 3. As in the �rst solution, we prove that FG K AP , where P is the midpoint of the

small ar

ŊBC.

Let O be the irumentre of the triangle ABC, and let M and N be the midpoints of the

small ars

ŊAB and

ŊAC, respetively. Then OM and ON are the perpendiular bisetors of AB

and AC, respetively.

A

B

P

M

F

N

O

D

E
G

d

d

C

The distane d between OM and the perpendiular bisetor of BD is

1
2
AB ´ 1

2
BD “ 1

2
AD,

hene it is equal to the distane between ON and the perpendiular bisetor of CE.

This shows that the isoseles trapezoid determined by the diameter δ of Γ through M and

the hord parallel to δ through F is ongruent to the isoseles trapezoid determined by the

diameter δ1
of Γ through N and the hord parallel to δ1

through G. Therefore MF “ NG,

yielding MN ‖ FG.

Now

=pMN,AP q “ 1

2

`ŊAM ` ŊPC ` ŊCN
˘

“ 1

4

`ŊAB ` ŊBC ` ŊCA
˘

“ 90˝,

hene MN K AP , and the onlusion follows.
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G2.

Let ABC be a triangle with AB “ AC, and let M be the midpoint of BC. Let P be

a point suh that PB ă PC and PA is parallel to BC. Let X and Y be points on the lines

PB and PC, respetively, so that B lies on the segment PX , C lies on the segment PY , and

=PXM “ =PYM . Prove that the quadrilateral APXY is yli.

(Australia)

Solution. Sine AB “ AC, AM is the perpendiular bisetor of BC, hene =PAM “
=AMC “ 90˝

.

P A

B

X

M C

Y

Z

Now let Z be the ommon point of AM and the perpendiular through Y to PC (notie

that Z lies on to the ray AM beyond M). We have =PAZ “ =PY Z “ 90˝
. Thus the points

P , A, Y , and Z are onyli.

Sine =CMZ “ =CY Z “ 90˝
, the quadrilateral CY ZM is yli, hene =CZM “

=CYM . By the ondition in the statement, =CYM “ =BXM , and, by symmetry in ZM ,

=CZM “ =BZM . Therefore, =BXM “ =BZM . It follows that the points B, X , Z, and M

are onyli, hene =BXZ “ 180˝ ´ =BMZ “ 90˝
.

Finally, we have =PXZ “ =PY Z “ =PAZ “ 90˝
, hene the �ve points P,A,X, Y, Z are

onyli. In partiular, the quadrilateral APXY is yli, as required.

Comment 1. Clearly, the key point Z from the solution above an be introdued in several di�erent

ways, e.g., as the seond meeting point of the irle CMY and the line AM , or as the seond meeting

point of the irles CMY and BMX, et.

For some of de�nitions of Z its loation is not obvious. For instane, if Z is de�ned as a ommon

point of AM and the perpendiular through X to PX, it is not lear that Z lies on the ray AM

beyond M . To avoid suh slippery details some more restritions on the onstrution may be required.

Comment 2. Let us disuss a onnetion to the Miquel point of a yli quadrilateral. Set X 1 “
MX X PC, Y 1 “ MY X PB, and Q “ XY X X 1Y 1

(see the �gure below).

We laim that BC ‖ PQ. (One way of proving this is the following. Notie that the quadruple

of lines PX,PM,PY, PQ is harmoni, hene the quadruple B, M , C, PQ X BC of their intersetion

points with BC is harmoni. Sine M is the midpoint of BC, PQ X BC is an ideal point, i.e.,

PQ ‖ BC.)

It follows from the given equality =PXM “ =PYM that the quadrilateral XYX 1Y 1
is yli.

Note that A is the projetion of M onto PQ. By a known desription, A is the Miquel point for the

sidelines XY,XY 1,X 1Y,X 1Y 1
. In partiular, the irle PXY passes through A.
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P

A

Q

Y’

X’

Y

C

B

X
M

Comment 3. An alternative approah is the following. One an note that the (oriented) lengths of

the segments CY and BX are both linear funtions of a parameter t “ cot=PXM . As t varies, the

intersetion point S of the perpendiular bisetors of PX and PY traes a �xed line, thus the family

of irles PXY has a �xed ommon point (other than P ). By heking partiular ases, one an show

that this �xed point is A.

Comment 4. The problem states that =PXM “ =PYM implies that APXY is yli. The original

submission laims that these two onditions are in fat equivalent. The Problem Seletion Committee

omitted the onverse part, sine it follows easily from the diret one, by reversing arguments.
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G3.

A irle ω of radius 1 is given. A olletion T of triangles is alled good, if the following

onditions hold:

piq eah triangle from T is insribed in ω;

piiq no two triangles from T have a ommon interior point.

Determine all positive real numbers t suh that, for eah positive integer n, there exists a

good olletion of n triangles, eah of perimeter greater than t.

(South Afria)

Answer: t P p0, 4s.
Solution. First, we show how to onstrut a good olletion of n triangles, eah of perimeter

greater than 4. This will show that all t ď 4 satisfy the required onditions.

Construt indutively an pn ` 2q-gon BA1A2 . . . AnC insribed in ω suh that BC is a

diameter, and BA1A2, BA2A3, . . . , BAn´1An, BAnC is a good olletion of n triangles. For

n “ 1, take any triangleBA1C insribed in ω suh thatBC is a diameter; its perimeter is greater

than 2BC “ 4. To perform the indutive step, assume that the pn ` 2q-gon BA1A2 . . . AnC is

already onstruted. Sine AnB ` AnC ` BC ą 4, one an hoose a point An`1 on the small

ar

ŐCAn, lose enough to C, so that AnB `AnAn`1 `BAn`1 is still greater than 4. Thus eah

of these new triangles BAnAn`1 and BAn`1C has perimeter greater than 4, whih ompletes

the indution step.

C B

A1

A2

A3

We proeed by showing that no t ą 4 satis�es the onditions of the problem. To this end,

we assume that there exists a good olletion T of n triangles, eah of perimeter greater than t,

and then bound n from above.

Take ε ą 0 suh that t “ 4 ` 2ε.

Claim. There exists a positive onstant σ “ σpεq suh that any triangle ∆ with perimeter

2s ě 4 ` 2ε, insribed in ω, has area Sp∆q at least σ.
Proof. Let a, b, c be the side lengths of ∆. Sine ∆ is insribed in ω, eah side has length at

most 2. Therefore, s ´ a ě p2 ` εq ´ 2 “ ε. Similarly, s ´ b ě ε and s ´ c ě ε. By Heron's

formula, Sp∆q “
a

sps ´ aqps ´ bqps ´ cq ě
a

p2 ` εqε3. Thus we an set σpεq “
a

p2 ` εqε3.
l

Now we see that the total area S of all triangles from T is at least nσpεq. On the other

hand, S does not exeed the area of the disk bounded by ω. Thus nσpεq ď π, whih means

that n is bounded from above.

Comment 1. One may prove the Claim using the formula S “ abc

4R
instead of Heron's formula.

Comment 2. In the statement of the problem ondition piq ould be replaed by a weaker one: eah

triangle from T lies within ω. This does not a�et the solution above, but redues the number of ways

to prove the Claim.
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G4.

A point T is hosen inside a triangle ABC. Let A1, B1, and C1 be the re�etions

of T in BC, CA, and AB, respetively. Let Ω be the irumirle of the triangle A1B1C1.

The lines A1T , B1T , and C1T meet Ω again at A2, B2, and C2, respetively. Prove that the

lines AA2, BB2, and CC2 are onurrent on Ω.

(Mongolia)

Solution. By ?pℓ, nq we always mean the direted angle of the lines ℓ and n, taken modulo 180˝
.

Let CC2 meet Ω again at K (as usual, if CC2 is tangent to Ω, we set T “ C2). We show

that the line BB2 ontains K; similarly, AA2 will also pass through K. For this purpose, it

su�es to prove that

?pC2C,C2A1q “ ?pB2B,B2A1q. (1)

By the problem ondition, CB and CA are the perpendiular bisetors of TA1 and TB1,

respetively. Hene, C is the irumentre of the triangle A1TB1. Therefore,

?pCA1, CBq “ ?pCB,CT q “ ?pB1A1, B1T q “ ?pB1A1, B1B2q.

In irle Ω we have ?pB1A1, B1B2q “ ?pC2A1, C2B2q. Thus,

?pCA1, CBq “ ?pB1A1, B1B2q “ ?pC2A1, C2B2q. (2)

Similarly, we get

?pBA1, BCq “ ?pC1A1, C1C2q “ ?pB2A1, B2C2q. (3)

The two obtained relations yield that the triangles A1BC and A1B2C2 are similar and

equioriented, hene

A1B2

A1B
“ A1C2

A1C
and ?pA1B,A1Cq “ ?pA1B2, A1C2q.

The seond equality may be rewritten as ?pA1B,A1B2q “ ?pA1C,A1C2q, so the triangles

A1BB2 and A1CC2 are also similar and equioriented. This establishes (1).

A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1A1

A2

B1

B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2B2

C1

C2

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

B
C
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Comment 1. In fat, the triangle A1BC is an image of A1B2C2 under a spiral similarity entred

at A1; in this ase, the triangles ABB2 and ACC2 are also spirally similar with the same entre.
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Comment 2. After obtaining (2) and (3), one an �nish the solution in di�erent ways.

For instane, introduing the point X “ BCXB2C2, one gets from these relations that the 4-tuples

pA1, B,B2,Xq and pA1, C,C2,Xq are both yli. Therefore, K is the Miquel point of the lines BB2,

CC2, BC, and B2C2; this yields that the meeting point of BB2 and CC2 lies on Ω.

Yet another way is to show that the points A1, B, C, and K are onyli, as

?pKC,KA1q “ ?pB2C2, B2A1q “ ?pBC,BA1q.

By symmetry, the seond point K 1
of intersetion of BB2 with Ω is also onyli to A1, B, and C,

hene K 1 “ K.
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Comment 3. The requirement that the ommon point of the lines AA2, BB2, and CC2 should lie

on Ω may seem to make the problem easier, sine it suggests some approahes. On the other hand,

there are also di�erent ways of showing that the lines AA2, BB2, and CC2 are just onurrent.

In partiular, the problem onditions yield that the lines A2T , B2T , and C2T are perpendiular to

the orresponding sides of the triangle ABC. One may show that the lines AT , BT , and CT are also

perpendiular to the orresponding sides of the triangle A2B2C2, i.e., the triangles ABC and A2B2C2

are orthologi, and their orthology entres oinide. It is known that suh triangles are also perspetive,

i.e. the lines AA2, BB2, and CC2 are onurrent (in projetive sense).

To show this mutual orthology, one may again apply angle hasing, but there are also other methods.

Let A1
, B1

, and C 1
be the projetions of T onto the sides of the triangle ABC. Then A2T ¨ TA1 “

B2T ¨ TB1 “ C2T ¨ TC 1
, sine all three produts equal (minus) half the power of T with respet to Ω.

This means that A2, B2, and C2 are the poles of the sidelines of the triangle ABC with respet to

some irle entred at T and having pure imaginary radius (in other words, the re�etions of A2, B2,

and C2 in T are the poles of those sidelines with respet to some regular irle entred at T ). Hene,

dually, the verties of the triangle ABC are also the poles of the sidelines of the triangle A2B2C2.
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G5.

Let ABC be a triangle with irumirle ω and inentre I. A line ℓ intersets the

lines AI, BI, and CI at points D, E, and F , respetively, distint from the points A, B, C,

and I. The perpendiular bisetors x, y, and z of the segments AD, BE, and CF , respetively

determine a triangle Θ. Show that the irumirle of the triangle Θ is tangent to ω.

(Denmark)

Preamble. Let X “ y X z, Y “ x X z, Z “ x X y and let Ω denote the irumirle of the

triangle XY Z. Denote by X0, Y0, and Z0 the seond intersetion points of AI, BI and CI,

respetively, with ω. It is known that Y0Z0 is the perpendiular bisetor of AI, Z0X0 is the

perpendiular bisetor of BI, and X0Y0 is the perpendiular bisetor of CI. In partiular, the

triangles XY Z and X0Y0Z0 are homotheti, beause their orresponding sides are parallel.

The solutions below mostly exploit the following approah. Consider the triangles XY Z

and X0Y0Z0, or some other pair of homotheti triangles ∆ and δ insribed into Ω and ω,

respetively. In order to prove that Ω and ω are tangent, it su�es to show that the entre T

of the homothety taking ∆ to δ lies on ω (or Ω), or, in other words, to show that ∆ and δ are

perspetive (i.e., the lines joining orresponding verties are onurrent), with their perspetor

lying on ω (or Ω).

We use direted angles throughout all the solutions.

Solution 1.

Claim 1. The re�etions ℓa, ℓb and ℓc of the line ℓ in the lines x, y, and z, respetively, are

onurrent at a point T whih belongs to ω.

A

B C
E

D
F

T

Z

z

I

Z 0

Db

Y0

Y

l

lb

lc

la

x

y

Dc

X0

X

W

w

Proof. Notie that ?pℓb, ℓcq “ ?pℓb, ℓq ` ?pℓ, ℓcq “ 2?py, ℓq ` 2?pℓ, zq “ 2?py, zq. But y K BI

and z K CI implies ?py, zq “ ?pBI, ICq, so, sine 2?pBI, ICq “ ?pBA,ACq, we obtain

?pℓb, ℓcq “ ?pBA,ACq. p1q

Sine A is the re�etion of D in x, A belongs to ℓa; similarly, B belongs to ℓb. Then p1q
shows that the ommon point T 1

of ℓa and ℓb lies on ω; similarly, the ommon point T 2
of ℓc

and ℓb lies on ω.

If B R ℓa and B R ℓc, then T 1
and T 2

are the seond point of intersetion of ℓb and ω, hene

they oinide. Otherwise, if, say, B P ℓc, then ℓc “ BC, so ?pBA,ACq “ ?pℓb, ℓcq “ ?pℓb, BCq,
whih shows that ℓb is tangent at B to ω and T 1 “ T 2 “ B. So T 1

and T 2
oinide in all the

ases, and the onlusion of the laim follows. l
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Now we prove that X , X0, T are ollinear. Denote by Db and Dc the re�etions of the point

D in the lines y and z, respetively. Then Db lies on ℓb, Dc lies on ℓc, and

?pDbX,XDcq “ ?pDbX,DXq ` ?pDX,XDcq “ 2?py,DXq ` 2?pDX, zq “ 2?py, zq
“ ?pBA,ACq “ ?pBT, TCq,

hene the quadrilateral XDbTDc is yli. Notie also that sine XDb “ XD “ XDc, the

points D,Db, Dc lie on a irle with entre X . Using in this irle the diameter DcD
1
c yields

?pDbDc, DcXq “ 90˝ ` ?pDbD
1
c, D

1
cXq “ 90˝ ` ?pDbD,DDcq. Therefore,

?pℓb, XT q “ ?pDbT,XT q “ ?pDbDc, DcXq “ 90˝ ` ?pDbD,DDcq
“ 90˝ ` ?pBI, ICq “ ?pBA,AIq “ ?pBA,AX0q “ ?pBT, TX0q “ ?pℓb, X0T q,

so the points X , X0, T are ollinear. By a similar argument, Y, Y0, T and Z,Z0, T are ollinear.

As mentioned in the preamble, the statement of the problem follows.

Comment 1. After proving Claim 1 one may proeed in another way. As it was shown, the re�etions

of ℓ in the sidelines of XY Z are onurrent at T . Thus ℓ is the Steiner line of T with respet to ∆XY Z

(that is the line ontaining the re�etions Ta, Tb, Tc of T in the sidelines of XY Z). The properties of

the Steiner line imply that T lies on Ω, and ℓ passes through the orthoentre H of the triangle XY Z.
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Let Ha, Hb, and Hc be the re�etions of the point H in the lines x, y, and z, respetively. Then

the triangle HaHbHc is insribed in Ω and homotheti to ABC (by an easy angle hasing). Sine

Ha P ℓa, Hb P ℓb, and Hc P ℓc, the triangles HaHbHc and ABC form a required pair of triangles ∆ and

δ mentioned in the preamble.

Comment 2. The following observation shows how one may guess the desription of the tangeny

point T from Solution 1.

Let us �x a diretion and move the line ℓ parallel to this diretion with onstant speed.

Then the points D, E, and F are moving with onstant speeds along the lines AI, BI, and CI,

respetively. In this ase x, y, and z are moving with onstant speeds, de�ning a family of homotheti

triangles XY Z with a ommon entre of homothety T . Notie that the triangle X0Y0Z0 belongs to

this family (for ℓ passing through I). We may speify the loation of T onsidering the degenerate

ase when x, y, and z are onurrent. In this degenerate ase all the lines x, y, z, ℓ, ℓa, ℓb, ℓc have a

ommon point. Note that the lines ℓa, ℓb, ℓc remain onstant as ℓ is moving (keeping its diretion).

Thus T should be the ommon point of ℓa, ℓb, and ℓc, lying on ω.
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Solution 2. As mentioned in the preamble, it is su�ient to prove that the entre T of the

homothety taking XY Z to X0Y0Z0 belongs to ω. Thus, it su�es to prove that ?pTX0, TY0q “
?pZ0X0, Z0Y0q, or, equivalently, ?pXX0, Y Y0q “ ?pZ0X0, Z0Y0q.

Reall that Y Z and Y0Z0 are the perpendiular bisetors of AD and AI, respetively. Then,

the vetor

ÝÑx perpendiular to Y Z and shifting the line Y0Z0 to Y Z is equal to

1
2

ÝÑ
ID. De�ne

the shifting vetors

ÝÑy “ 1
2

ÝÑ
IE, ÝÑz “ 1

2

ÝÑ
IF similarly. Consider now the triangle UV W formed by

the perpendiulars to AI, BI, and CI through D, E, and F , respetively (see �gure below).

This is another triangle whose sides are parallel to the orresponding sides of XY Z.

Claim 2.

ÝÑ
IU “ 2

ÝÝÝÑ
X0X ,

ÝÑ
IV “ 2

ÝÝÑ
Y0Y ,

ÝÝÑ
IW “ 2

ÝÝÑ
Z0Z.

Proof.We prove one of the relations, the other proofs being similar. To prove the equality of two

vetors it su�es to projet them onto two non-parallel axes and hek that their projetions

are equal.

The projetion of

ÝÝÝÑ
X0X onto IB equals ~y, while the projetion of

ÝÑ
IU onto IB is

ÝÑ
IE “ 2~y.

The projetions onto the other axis IC are ~z and

ÝÑ
IF “ 2~z. Then

ÝÑ
IU “ 2

ÝÝÝÑ
X0X follows. l

Notie that the line ℓ is the Simson line of the point I with respet to the triangle UVW ;

thus U , V , W , and I are onyli. It follows from Claim 2 that ?pXX0, Y Y0q “ ?pIU, IV q “
?pWU,WV q “ ?pZ0X0, Z0Y0q, and we are done.
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l

Solution 3. Let Ia, Ib, and Ic be the exentres of triangle ABC orresponding to A, B, and

C, respetively. Also, let u, v, and w be the lines through D, E, and F whih are perpendiular

to AI, BI, and CI, respetively, and let UVW be the triangle determined by these lines, where

u “ VW , v “ UW and w “ UV (see �gure above).

Notie that the line u is the re�etion of IbIc in the line x, beause u, x, and IbIc are

perpendiular to AD and x is the perpendiular bisetor of AD. Likewise, v and IaIc are

re�etions of eah other in y, while w and IaIb are re�etions of eah other in z. It follows that

X , Y , and Z are the midpoints of UIa, V Ib and WIc, respetively, and that the triangles UVW ,

XY Z and IaIbIc are either translates of eah other or homotheti with a ommon homothety

entre.

Construt the points T and S suh that the quadrilaterals UV IW , XY TZ and IaIbSIc are

homotheti. Then T is the midpoint of IS. Moreover, note that ℓ is the Simson line of the

point I with respet to the triangle UV W , hene I belongs to the irumirle of the triangle

UV W , therefore T belongs to Ω.
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Consider now the homothety or translation h1 that maps XY ZT to IaIbIcS and the homo-

thety h2 with entre I and fator

1
2
. Furthermore, let h “ h2 ˝ h1. The transform h an be a

homothety or a translation, and

h pT q “ h2 ph1 pT qq “ h2 pSq “ T,

hene T is a �xed point of h. So, h is a homothety with entre T . Note that h2 maps the

exentres Ia, Ib, Ic to X0, Y0, Z0 de�ned in the preamble. Thus the entre T of the homothety

taking XY Z to X0Y0Z0 belongs to Ω, and this ompletes the proof.
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G6.

A onvex quadrilateral ABCD satis�es AB ¨ CD “ BC ¨ DA. A point X is hosen

inside the quadrilateral so that =XAB “ =XCD and =XBC “ =XDA. Prove that =AXB`
=CXD “ 180˝

.

(Poland)

Solution 1. Let B1
be the re�etion of B in the internal angle bisetor of =AXC, so that

=AXB1 “ =CXB and =CXB1 “ =AXB. If X , D, and B1
are ollinear, then we are done.

Now assume the ontrary.

On the ray XB1
take a point E suh that XE ¨ XB “ XA ¨ XC, so that △AXE „

△BXC and △CXE „ △BXA. We have =XCE ` =XCD “ =XBA ` =XAB ă 180˝
and

=XAE ` =XAD “ =XDA ` =XAD ă 180˝
, whih proves that X lies inside the angles

=ECD and =EAD of the quadrilateral EADC. Moreover, X lies in the interior of exatly

one of the two triangles EAD, ECD (and in the exterior of the other).

A

B
C

D

X

E
B’

The similarities mentioned above imply XA ¨ BC “ XB ¨ AE and XB ¨ CE “ XC ¨ AB.
Multiplying these equalities with the given equality AB ¨CD “ BC ¨DA, we obtain XA ¨CD ¨
CE “ XC ¨ AD ¨ AE, or, equivalently,

XA ¨ DE

AD ¨ AE “ XC ¨ DE

CD ¨ CE
. p˚q

Lemma. Let PQR be a triangle, and let X be a point in the interior of the angle QPR suh that

=QPX “ =PRX . Then

PX ¨ QR

PQ ¨ PR
ă 1 if and only if X lies in the interior of the triangle PQR.

Proof. The lous of points X with =QPX “ =PRX lying inside the angle QPR is an ar α

of the irle γ through R tangent to PQ at P . Let γ interset the line QR again at Y (if γ

is tangent to QR, then set Y “ R). The similarity △QPY „ △QRP yields PY “ PQ ¨ PR

QR
.

Now it su�es to show that PX ă PY if and only if X lies in the interior of the triangle PQR.

Let m be a line through Y parallel to PQ. Notie that the points Z of γ satisfying PZ ă PY

are exatly those between the lines m and PQ.

Case 1: Y lies in the segment QR (see the left �gure below).

In this ase Y splits α into two ars

ŊPY and

ŊY R. The ar ŊPY lies inside the triangle PQR,

and

ŊPY lies between m and PQ, hene PX ă PY for points X P ŊPY . The other ar

ŊY R

lies outside triangle PQR, and ŊY R is on the opposite side of m than P , hene PX ą PY for

X P ŊY R.
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Case 2: Y lies on the ray QR beyond R (see the right �gure below).

In this ase the whole ar α lies inside triangle PQR, and between m and PQ, thus PX ă
PY for all X P α. l

P

Q

R

X

Y

P

Q
R

Y

X

Applying the Lemma (to △EAD with the point X , and to △ECD with the point X),

we obtain that exatly one of two expressions

XA ¨ DE

AD ¨ AE and

XC ¨ DE

CD ¨ CE
is less than 1, whih

ontradits (˚).

Comment 1. One may show that AB ¨ CD “ XA ¨ XC ` XB ¨ XD. We know that D,X,E are

ollinear and =DCE “ =CXD “ 180˝ ´ =AXB. Therefore,

AB ¨ CD “ XB ¨ sin=AXB

sin=BAX
¨ DE ¨ sin=CED

sin=DCE
“ XB ¨ DE.

Furthermore, XB ¨ DE “ XB ¨ pXD ` XEq “ XB ¨ XD ` XB ¨ XE “ XB ¨ XD ` XA ¨ XC.

Comment 2. For a onvex quadrilateral ABCD with AB ¨ CD “ BC ¨ DA, it is known that

=DAC ` =ABD ` =BCA` =CDB “ 180˝
(among other, it was used as a problem on the Regional

round of All-Russian olympiad in 2012), but it seems that there is no essential onnetion between this

fat and the original problem.

Solution 2. The solution onsists of two parts. In Part 1 we show that it su�es to prove

that

XB

XD
“ AB

CD
p1q

and

XA

XC
“ DA

BC
. p2q

In Part 2 we establish these equalities.

Part 1. Using the sine law and applying (1) we obtain

sin=AXB

sin=XAB
“ AB

XB
“ CD

XD
“ sin=CXD

sin=XCD
,

so sin=AXB “ sin=CXD by the problem onditions. Similarly, (2) yields sin=DXA “
sin=BXC. If at least one of the pairs p=AXB,=CXDq and p=BXC,=DXAq onsists of

supplementary angles, then we are done. Otherwise, =AXB “ =CXD and =DXA “ =BXC.

In this ase X “ AC X BD, and the problem onditions yield that ABCD is a parallelogram

and hene a rhombus. In this last ase the laim also holds.

Part 2. To prove the desired equality (1), invert ABCD at entre X with unit radius; the

images of points are denoted by primes.

We have

=A1B1C 1 “ =XB1A1 ` =XB1C 1 “ =XAB ` =XCB “ =XCD ` =XCB “ =BCD.
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Similarly, the orresponding angles of quadrilaterals ABCD and D1A1B1C 1
are equal.

Moreover, we have

A1B1 ¨ C 1D1 “ AB

XA ¨ XB
¨ CD

XC ¨ XD
“ BC

XB ¨ XC
¨ DA

XD ¨ DA
“ B1C 1 ¨ D1A1.

A

B

C

D

X
7→

A′

B′

C ′

D′

X

Now we need the following Lemma.

Lemma. Assume that the orresponding angles of onvex quadrilaterals XY ZT and X 1Y 1Z 1T 1

are equal, and that XY ¨ ZT “ Y Z ¨ TX and X 1Y 1 ¨ Z 1T 1 “ Y 1Z 1 ¨ T 1X 1
. Then the two

quadrilaterals are similar.

Proof. Take the quadrilateral XY Z1T1 similar to X 1Y 1Z 1T 1
and sharing the side XY with

XY ZT , suh that Z1 and T1 lie on the rays Y Z and XT , respetively, and Z1T1 ‖ ZT . We

need to prove that Z1 “ Z and T1 “ T . Assume the ontrary. Without loss of generality,

TX ą XT1. Let segments XZ and Z1T1 interset at U . We have

T1X

T1Z1

ă T1X

T1U
“ TX

ZT
“ XY

Y Z
ă XY

Y Z1

,

thus T1X ¨ Y Z1 ă T1Z1 ¨ XY . A ontradition. l
X Y

Z

T

U
Z1

T1

It follows from the Lemma that the quadrilaterals ABCD and D1A1B1C 1
are similar, hene

BC

AB
“ A1B1

D1A1
“ AB

XA ¨ XB
¨ XD ¨ XA

DA
“ AB

AD
¨ XD

XB
,

and therefore

XB

XD
“ AB2

BC ¨ AD “ AB2

AB ¨ CD
“ AB

CD
.

We obtain (1), as desired; (2) is proved similarly.

Comment. Part 1 is an easy one, while part 2 seems to be ruial. On the other hand, after the

proof of the similarity D1A1B1C 1 „ ABCD one may �nish the solution in di�erent ways, e.g., as

follows. The similarity taking D1A1B1C 1
to ABCD maps X to the point X 1

isogonally onjugate

of X with respet to ABCD (i.e. to the point X 1
inside ABCD suh that =BAX “ =DAX 1

,

=CBX “ =ABX 1
, =DCX “ =BCX 1

, =ADX “ =CDX 1
). It is known that the required equality

=AXB ` =CXD “ 180˝
is one of known onditions on a point X inside ABCD equivalent to the

existene of its isogonal onjugate.
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G7.

Let O be the irumentre, and Ω be the irumirle of an aute-angled triangle ABC.

Let P be an arbitrary point on Ω, distint from A, B, C, and their antipodes in Ω. Denote

the irumentres of the triangles AOP , BOP , and COP by OA, OB, and OC , respetively.

The lines ℓA, ℓB, and ℓC perpendiular to BC, CA, and AB pass through OA, OB, and OC ,

respetively. Prove that the irumirle of the triangle formed by ℓA, ℓB, and ℓC is tangent to

the line OP .

(Russia)

Solution. As usual, we denote the direted angle between the lines a and b by ?pa, bq. We

frequently use the fat that a1 K a2 and b1 K b2 yield ?pa1, b1q “ ?pa2, b2q.
Let the lines ℓB and ℓC meet at LA; de�ne the points LB and LC similarly. Note that

the sidelines of the triangle LALBLC are perpendiular to the orresponding sidelines of ABC.

Points OA, OB, OC are loated on the orresponding sidelines of LALBLC ; moreover, OA, OB,

OC all lie on the perpendiular bisetor of OP .
A

B
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ωB

ωC

Ω

Claim 1. The points LB, P , OA, and OC are onyli.

Proof. Sine O is symmetri to P in OAOC , we have

?pOAP,OCP q “ ?pOCO,OAOq “ ?pCP,AP q “ ?pCB,ABq “ ?pOALB, OCLBq. l

Denote the irle through LB, P , OA, and OC by ωB. De�ne the irles ωA and ωC similarly.

Claim 2. The irumirle of the triangle LALBLC passes through P .

Proof. From yli quadruples of points in the irles ωB and ωC, we have

?pLCLA, LCP q “ ?pLCOB, LCP q “ ?pOAOB, OAP q
“ ?pOAOC , OAP q “ ?pLBOC , LBP q “ ?pLBLA, LBP q. l

Claim 3. The points P , LC , and C are ollinear.

Proof. We have ?pPLC , LCLAq “ ?pPLC , LCOBq “ ?pPOA, OAOBq. Further, sine OA is

the entre of the irle AOP , ?pPOA, OAOBq “ ?pPA,AOq. As O is the irumentre of the

triangle PCA, ?pPA,AOq “ π{2´?pCA,CP q “ ?pCP, LCLAq. We obtain ?pPLC , LCLAq “
?pCP, LCLAq, whih shows that P P CLC . l
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Similarly, the points P , LA, A are ollinear, and the points P , LB, B are also ollinear.

Finally, the omputation above also shows that

?pOP, PLAq “ ?pPA,AOq “ ?pPLC , LCLAq,

whih means that OP is tangent to the irle PLALBLC .

Comment 1. The proof of Claim 2 may be replaed by the following remark: sine P belongs to the

irles ωA and ωC , P is the Miquel point of the four lines ℓA, ℓB , ℓC , and OAOBOC .

Comment 2. Claims 2 and 3 an be proved in several di�erent ways and, in partiular, in the reverse

order.

Claim 3 implies that the triangles ABC and LALBLC are perspetive with perspetor P . Claim 2

an be derived from this observation using spiral similarity. Consider the entre Q of the spiral similarity

that maps ABC to LALBLC . From known spiral similarity properties, the points LA, LB , P,Q are

onyli, and so are LA, LC , P,Q.

Comment 3. The �nal onlusion an also be proved it terms of spiral similarity: the spiral similarity

with entre Q loated on the irle ABC maps the irle ABC to the irle PLALBLC . Thus these

irles are orthogonal.

Comment 4. Notie that the homothety with entre O and ratio 2 takes OA to A1
that is the ommon

point of tangents to Ω at A and P . Similarly, let this homothety take OB to B1
and OC to C 1

. Let

the tangents to Ω at B and C meet at A2
, and de�ne the points B2

and C2
similarly. Now, replaing

labels O with I, Ω with ω, and swapping labels A Ø A2
, B Ø B2

, C Ø C2
we obtain the following

Reformulation. Let ω be the inirle, and let I be the inentre of a triangle ABC. Let P be

a point of ω (other than the points of ontat of ω with the sides of ABC). The tangent to ω at P

meets the lines AB, BC, and CA at A1
, B1

, and C 1
, respetively. Line ℓA parallel to the internal

angle bisetor of =BAC passes through A1
; de�ne lines ℓB and ℓC similarly. Prove that the line IP is

tangent to the irumirle of the triangle formed by ℓA, ℓB, and ℓC .

Though this formulation is equivalent to the original one, it seems more hallenging, sine the point

of ontat is now �hidden�.
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Number Theory

N1.

Determine all pairs pn, kq of distint positive integers suh that there exists a positive

integer s for whih the numbers of divisors of sn and of sk are equal.

(Ukraine)

Answer: All pairs pn, kq suh that n ∤ k and k ∤ n.

Solution. As usual, the number of divisors of a positive integer n is denoted by dpnq. If

n “ ś
i p

αi

i is the prime fatorisation of n, then dpnq “ ś
ipαi ` 1q.

We start by showing that one annot �nd any suitable number s if k | n or n | k (and

k ‰ n). Suppose that n | k, and hoose any positive integer s. Then the set of divisors of sn is

a proper subset of that of sk, hene dpsnq ă dpskq. Therefore, the pair pn, kq does not satisfy
the problem requirements. The ase k | n is similar.

Now assume that n ∤ k and k ∤ n. Let p1, . . . , pt be all primes dividing nk, and onsider the

prime fatorisations

n “
tź

i“1

pαi

i and k “
tź

i“1

p
βi

i .

It is reasonable to searh for the number s having the form

s “
tź

i“1

p
γi
i .

The (nonnegative integer) exponents γi should be hosen so as to satisfy

dpsnq
dpskq “

tź

i“1

αi ` γi ` 1

βi ` γi ` 1
“ 1. (1)

First of all, if αi “ βi for some i, then, regardless of the value of γi, the orresponding fator

in (1) equals 1 and does not a�et the produt. So we may assume that there is no suh index i.

For the other fators in (1), the following lemma is useful.

Lemma. Let α ą β be nonnegative integers. Then, for every integer M ě β ` 1, there exists a

nonnegative integer γ suh that

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
“ M ` 1

M
.

Proof.

α ` γ ` 1

β ` γ ` 1
“ 1 ` 1

M
ðñ α ´ β

β ` γ ` 1
“ 1

M
ðñ γ “ Mpα ´ βq ´ pβ ` 1q ě 0. l

Now we an �nish the solution. Without loss of generality, there exists an index u suh that

αi ą βi for i “ 1, 2, . . . , u, and αi ă βi for i “ u` 1, . . . , t. The onditions n ∤ k and k ∤ n mean

that 1 ď u ď t ´ 1.

Choose an integer X greater than all the αi and βi. By the lemma, we an de�ne the

numbers γi so as to satisfy

αi ` γi ` 1

βi ` γi ` 1
“ uX ` i

uX ` i ´ 1
for i “ 1, 2, . . . , u, and

βu`i ` γu`i ` 1

αu`i ` γu`i ` 1
“ pt ´ uqX ` i

pt ´ uqX ` i ´ 1
for i “ 1, 2, . . . , t ´ u.
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Then we will have

dpsnq
dpskq “

uź

i“1

uX ` i

uX ` i ´ 1
¨
t´uź

i“1

pt ´ uqX ` i ´ 1

pt ´ uqX ` i
“ upX ` 1q

uX
¨ pt ´ uqX

pt ´ uqpX ` 1q “ 1,

as required.

Comment. The lemma an be used in various ways, in order to provide a suitable value of s. In

partiular, one may apply indution on the number t of prime fators, using identities like

n

n ´ 1
“ n2

n2 ´ 1
¨ n ` 1

n
.
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N2.

Let n ą 1 be a positive integer. Eah ell of an n ˆ n table ontains an integer.

Suppose that the following onditions are satis�ed:

piq Eah number in the table is ongruent to 1 modulo n;

piiq The sum of numbers in any row, as well as the sum of numbers in any olumn, is ongruent

to n modulo n2
.

Let Ri be the produt of the numbers in the ith row, and Cj be the produt of the numbers in

the jth olumn. Prove that the sums R1 ` ¨ ¨ ¨ `Rn and C1 ` ¨ ¨ ¨ `Cn are ongruent modulo n4
.

(Indonesia)

Solution 1. Let Ai,j be the entry in the ith row and the jth olumn; let P be the produt of

all n2
entries. For onveniene, denote ai,j “ Ai,j ´ 1 and ri “ Ri ´ 1. We show that

nÿ

i“1

Ri ” pn ´ 1q ` P pmod n4q. (1)

Due to symmetry of the problem onditions, the sum of all the Cj is also ongruent to pn ´ 1q`P

modulo n4
, whene the onlusion.

By ondition piq, the number n divides ai,j for all i and j. So, every produt of at least two

of the ai,j is divisible by n2
, hene

Ri “
nź

j“1

p1`ai,jq “ 1`
nÿ

j“1

ai,j `
ÿ

1ďj1ăj2ďn

ai,j1ai,j2 `¨ ¨ ¨ ” 1`
nÿ

j“1

ai,j ” 1´n`
nÿ

j“1

Ai,j pmod n2q

for every index i. Using ondition piiq, we obtain Ri ” 1 pmod n2q, and so n2 | ri.
Therefore, every produt of at least two of the ri is divisible by n4

. Repeating the same

argument, we obtain

P “
nź

i“1

Ri “
nź

i“1

p1 ` riq ” 1 `
nÿ

i“1

ri pmod n4q,

whene

nÿ

i“1

Ri “ n `
nÿ

i“1

ri ” n ` pP ´ 1q pmod n4q,

as desired.

Comment. The original version of the problem statement ontained also the ondition

piiiq The produt of all the numbers in the table is ongruent to 1 modulo n4
.

This ondition appears to be super�uous, so it was omitted.

Solution 2. We present a more straightforward (though lengthier) way to establish (1). We

also use the notation of ai,j.

By ondition piq, all the ai,j are divisible by n. Therefore, we have

P “
nź

i“1

nź

j“1

p1 ` ai,jq ” 1 `
ÿ

pi,jq

ai,j `
ÿ

pi1,j1q, pi2,j2q

ai1,j1ai2,j2

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q

ai1,j1ai2,j2ai3,j3 pmod n4q,
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where the last two sums are taken over all unordered pairs/triples of pairwise di�erent pairs

pi, jq; suh onventions are applied throughout the solution.

Similarly,

nÿ

i“1

Ri “
nÿ

i“1

nź

j“1

p1 ` ai,jq ” n `
ÿ

i

ÿ

j

ai,j `
ÿ

i

ÿ

j1, j2

ai,j1ai,j2 `
ÿ

i

ÿ

j1, j2, j3

ai,j1ai,j2ai,j3 pmod n4q.

Therefore,

P ` pn ´ 1q ´
ÿ

i

Ri ”
ÿ

pi1,j1q, pi2,j2q
i1‰i2

ai1,j1ai2,j2 `
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2‰i3‰i1

ai1,j1ai2,j2ai3,j3

`
ÿ

pi1,j1q, pi2,j2q, pi3,j3q
i1‰i2“i3

ai1,j1ai2,j2ai3,j3 pmod n4q.

We show that in fat eah of the three sums appearing in the right-hand part of this ongruene

is divisible by n4
; this yields (1). Denote those three sums by Σ1, Σ2, and Σ3 in order of

appearane. Reall that by ondition piiq we have
ÿ

j

ai,j ” 0 pmod n2q for all indies i.

For every two indies i1 ă i2 we have

ÿ

j1

ÿ

j2

ai1,j1ai2,j2 “
ˆÿ

j1

ai1,j1

˙
¨
ˆÿ

j2

ai2,j2

˙
” 0 pmod n4q,

sine eah of the two fators is divisible by n2
. Summing over all pairs pi1, i2q we obtain n4 | Σ1.

Similarly, for every three indies i1 ă i2 ă i3 we have

ÿ

j1

ÿ

j2

ÿ

j3

ai1,j1ai2,j2ai3,j3 “
ˆÿ

j1

ai1,j1

˙
¨
ˆÿ

j2

ai2,j2

˙
¨
ˆÿ

j3

ai3,j3

˙

whih is divisible even by n6
. Hene n4 | Σ2.

Finally, for every indies i1 ‰ i2 “ i3 and j2 ă j3 we have

ai2,j2 ¨ ai2,j3 ¨
ÿ

j1

ai1,j1 ” 0 pmod n4q,

sine the three fators are divisible by n, n, and n2
, respetively. Summing over all 4-tuples of

indies pi1, i2, j2, j3q we get n4 | Σ3.
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N3.

De�ne the sequene a0, a1, a2, . . . by an “ 2n ` 2tn{2u
. Prove that there are in�nitely

many terms of the sequene whih an be expressed as a sum of (two or more) distint terms

of the sequene, as well as in�nitely many of those whih annot be expressed in suh a way.

(Serbia)

Solution 1. Call a nonnegative integer representable if it equals the sum of several (possibly 0

or 1) distint terms of the sequene. We say that two nonnegative integers b and c are equivalent

(written as b „ c) if they are either both representable or both non-representable.

One an easily ompute

Sn´1 :“ a0 ` ¨ ¨ ¨ ` an´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3.

Indeed, we have Sn ´ Sn´1 “ 2n ` 2tn{2u “ an so we an use the indution. In partiular,

S2k´1 “ 22k ` 2k`1 ´ 3.

Note that, if n ě 3, then 2rn{2s ě 22 ą 3, so

Sn´1 “ 2n ` 2rn{2s ` 2tn{2u ´ 3 ą 2n ` 2tn{2u “ an.

Also notie that Sn´1 ´ an “ 2rn{2s ´ 3 ă an.

The main tool of the solution is the following laim.

Claim 1. Assume that b is a positive integer suh that Sn´1 ´ an ă b ă an for some n ě 3.

Then b „ Sn´1 ´ b.

Proof. As seen above, we have Sn´1 ą an. Denote c “ Sn´1 ´ b; then Sn´1 ´ an ă c ă an, so

the roles of b and c are symmetrial.

Assume that b is representable. The representation annot ontain ai with i ě n, sine

b ă an. So b is the sum of some subset of ta0, a1, . . . , an´1u; then c is the sum of the omplement.

The onverse is obtained by swapping b and c. l

We also need the following version of this laim.

Claim 2. For any n ě 3, the number an an be represented as a sum of two or more distint

terms of the sequene if and only if Sn´1 ´ an “ 2rn{2s ´ 3 is representable.

Proof. Denote c “ Sn´1 ´ an ă an. If an satis�es the required ondition, then it is the sum

of some subset of ta0, a1, . . . , an´1u; then c is the sum of the omplement. Conversely, if c is

representable, then its representation onsists only of the numbers from ta0, . . . , an´1u, so an is

the sum of the omplement. l

By Claim 2, in order to prove the problem statement, it su�es to �nd in�nitely many

representable numbers of the form 2t ´ 3, as well as in�nitely many non-representable ones.

Claim 3. For every t ě 3, we have 2t ´ 3 „ 24t´6 ´ 3, and 24t´6 ´ 3 ą 2t ´ 3.

Proof. The inequality follows from t ě 3. In order to prove the equivalene, we apply Claim 1

twie in the following manner.

First, sine S2t´3 ´ a2t´2 “ 2t´1 ´ 3 ă 2t ´ 3 ă 22t´2 ` 2t´1 “ a2t´2, by Claim 1 we have

2t ´ 3 „ S2t´3 ´ p2t ´ 3q “ 22t´2
.

Seond, sine S4t´7 ´ a4t´6 “ 22t´3 ´ 3 ă 22t´2 ă 24t´6 ` 22t´3 “ a4t´6, by Claim 1 we have

22t´2 „ S4t´7 ´ 22t´2 “ 24t´6 ´ 3.

Therefore, 2t ´ 3 „ 22t´2 „ 24t´6 ´ 3, as required. l

Now it is easy to �nd the required numbers. Indeed, the number 23 ´ 3 “ 5 “ a0 ` a1 is

representable, so Claim 3 provides an in�nite sequene of representable numbers

23 ´ 3 „ 26 ´ 3 „ 218 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
On the other hand, the number 27 ´ 3 “ 125 is non-representable (sine by Claim 1 we have

125 „ S6 ´ 125 “ 24 „ S4 ´ 24 “ 17 „ S3 ´ 17 “ 4 whih is learly non-representable). So

Claim 3 provides an in�nite sequene of non-representable numbers

27 ´ 3 „ 222 ´ 3 „ 282 ´ 3 „ ¨ ¨ ¨ „ 2t ´ 3 „ 24t´6 ´ 3 „ ¨ ¨ ¨ .
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Solution 2. We keep the notion of representability and the notation Sn from the previous

solution. We say that an index n is good if an writes as a sum of smaller terms from the

sequene a0, a1, . . .. Otherwise we say it is bad. We must prove that there are in�nitely many

good indies, as well as in�nitely many bad ones.

Lemma 1. If m ě 0 is an integer, then 4m is representable if and only if either of 2m ` 1 and

2m ` 2 is good.

Proof. The ase m “ 0 is obvious, so we may assume that m ě 1. Let n “ 2m ` 1 or 2m ` 2.

Then n ě 3. We notie that

Sn´1 ă an´2 ` an.

The inequality writes as 2n ` 2rn{2s ` 2tn{2u ´ 3 ă 2n ` 2tn{2u ` 2n´2 ` 2tn{2u´1
, i.e. as 2rn{2s ă

2n´2 ` 2tn{2u´1 ` 3. If n ě 4, then n{2 ď n ´ 2, so rn{2s ď n ´ 2 and 2rn{2s ď 2n´2
. For n “ 3

the inequality veri�es separately.

If n is good, then an writes as an “ ai1 ` ¨ ¨ ¨ ` air , where r ě 2 and i1 ă ¨ ¨ ¨ ă ir ă n.

Then ir “ n ´ 1 and ir´1 “ n ´ 2, for if n ´ 1 or n ´ 2 is missing from the sequene i1, . . . , ir,

then ai1 ` ¨ ¨ ¨ ` air ď a0 ` ¨ ¨ ¨ ` an´3 ` an´1 “ Sn´1 ´ an´2 ă an. Thus, if n is good, then both

an ´ an´1 and an ´ an´1 ´ an´2 are representable.

We now onsider the ases n “ 2m ` 1 and n “ 2m ` 2 separately.

If n “ 2m ` 1, then an ´ an´1 “ a2m`1 ´ a2m “ p22m`1 ` 2mq ´ p22m ` 2mq “ 22m. So we

proved that, if 2m ` 1 is good, then 22m is representable. Conversely, if 22m is representable,

then 22m ă a2m, so 22m is a sum of some distint terms ai with i ă 2m. It follows that

a2m`1 “ a2m ` 22m writes as a2m plus a sum of some distint terms ai with i ă 2m. Hene

2m ` 1 is good.

If n “ 2m ` 2, then an ´ an´1 ´ an´2 “ a2m`2 ´ a2m`1 ´ a2m “ p22m`2 ` 2m`1q ´ p22m`1 `
2mq ´ p22m ` 2mq “ 22m. So we proved that, if 2m ` 2 is good, then 22m is representable.

Conversely, if 22m is representable, then, as seen in the previous ase, it writes as a sum of some

distint terms ai with i ă 2m. Hene a2m`2 “ a2m`1 ` a2m ` 22m writes as a2m`1 ` a2m plus a

sum of some distint terms ai with i ă 2m. Thus 2m ` 2 is good. l

Lemma 2. If k ě 2, then 24k´2
is representable if and only if 2k`1

is representable.

In partiular, if s ě 2, then 4s is representable if and only if 44s´3
is representable. Also,

44s´3 ą 4s.

Proof. We have 24k´2 ă a4k´2, so in a representation of 24k´2
we an have only terms ai with

i ď 4k ´ 3. Notie that

a0 ` ¨ ¨ ¨ ` a4k´3 “ 24k´2 ` 22k ´ 3 ă 24k´2 ` 22k ` 2k “ 24k´2 ` a2k.

Hene, any representation of 24k´2
must ontain all terms from a2k to a4k´3. (If any of these

terms is missing, then the sum of the remaining ones is ď pa0 ` ¨ ¨ ¨ ` a4k´3q ´ a2k ă 24k´2
.)

Hene, if 24k´2
is representable, then 24k´2 ´ ř4k´3

i“2k ai is representable. But

24k´2 ´
4k´3ÿ

i“2k

ai “ 24k´2 ´ pS4k´3 ´ S2k´1q “ 24k´2 ´ p24k´2 ` 22k ´ 3q ` p22k ` 2k`1 ´ 3q “ 2k`1.

So, if 24k´2
is representable, then 2k`1

is representable. Conversely, if 2k`1
is representable,

then 2k`1 ă 22k ` 2k “ a2k, so 2k`1
writes as a sum of some distint terms ai with i ă 2k. It

follows that 24k´2 “ ř4k´3

i“2k ai ` 2k`1
writes as a4k´3 ` a4k´4 ` ¨ ¨ ¨ ` a2k plus the sum of some

distint terms ai with i ă 2k. Hene 24k´2
is representable.

For the seond statement, if s ě 2, then we just take k “ 2s´1 and we notie that 2k`1 “ 4s

and 24k´2 “ 44s´3
. Also, s ě 2 implies that 4s ´ 3 ą s. l
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Now 42 “ a2`a3 is representable, whereas 4
6 “ 4096 is not. Indeed, note that 46 “ 212 ă a12,

so the only available terms for a representation are a0, . . . , a11, i.e., 2, 3, 6, 10, 20, 36, 72,

136, 272, 528, 1056, 2080. Their sum is S11 “ 4221, whih exeeds 4096 by 125. Then any

representation of 4096 must ontain all the terms from a0, . . . , a11 that are greater that 125,

i.e., 136, 272, 528, 1056, 2080. Their sum is 4072. Sine 4096´ 4072 “ 24 and 24 is learly not

representable, 4096 is non-representable as well.

Starting with these values of m, by using Lemma 2, we an obtain in�nitely many rep-

resentable powers of 4, as well as in�nitely many non-representable ones. By Lemma 1, this

solves our problem.
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N4.

Let a1, a2, . . ., an, . . . be a sequene of positive integers suh that

a1

a2
` a2

a3
` ¨ ¨ ¨ ` an´1

an
` an

a1

is an integer for all n ě k, where k is some positive integer. Prove that there exists a positive

integer m suh that an “ an`1 for all n ě m.

(Mongolia)

Solution 1. The argument hinges on the following two fats: Let a, b, c be positive integers

suh that N “ b{c ` pc ´ bq{a is an integer.

(1) If gcdpa, cq “ 1, then c divides b ; and

(2) If gcdpa, b, cq “ 1, then gcdpa, bq “ 1.

To prove (1), write ab “ cpaN ` b ´ cq. Sine gcdpa, cq “ 1, it follows that c divides b. To

prove (2), write c2 ´ bc “ apcN ´ bq to infer that a divides c2 ´ bc. Letting d “ gcdpa, bq, it
follows that d divides c2, and sine the two are relatively prime by hypothesis, d “ 1.

Now, let sn “ a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` an´1{an ` an{a1, let δn “ gcdpa1, an, an`1q and write

sn`1 ´ sn “ an

an`1

` an`1 ´ an

a1
“ an{δn

an`1{δn
` an`1{δn ´ an{δn

a1{δn
.

Let n ě k. Sine gcdpa1{δn, an{δn, an`1{δnq “ 1, it follows by (2) that gcdpa1{δn, an{δnq “ 1.

Let dn “ gcdpa1, anq. Then dn “ δn ¨ gcdpa1{δn, an{δnq “ δn, so dn divides an`1, and therefore

dn divides dn`1.

Consequently, from some rank on, the dn form a nondereasing sequene of integers not

exeeding a1, so dn “ d for all n ě ℓ, where ℓ is some positive integer.

Finally, sine gcdpa1{d, an`1{dq “ 1, it follows by (1) that an`1{d divides an{d, so an ě an`1

for all n ě ℓ. The onlusion follows.

Solution 2. We use the same notation sn. This time, we explore the exponents of primes in

the prime fatorizations of the an for n ě k.

To start, for every n ě k, we know that the number

sn`1 ´ sn “ an

an`1

` an`1

a1
´ an

a1
p˚q

is integer. Multiplying it by a1 we obtain that a1an{an`1 is integer as well, so that an`1 | a1an.
This means that an | an´k

1 ak, so all prime divisors of an are among those of a1ak. There are

�nitely many suh primes; therefore, it su�es to prove that the exponent of eah of them in

the prime fatorization of an is eventually onstant.

Choose any prime p | a1ak. Reall that vppqq is the standard notation for the exponent of p

in the prime fatorization of a nonzero rational number q. Say that an index n ě k is large if

vppanq ě vppa1q. We separate two ases.

Case 1: There exists a large index n.

If vppan`1q ă vppa1q, then vppan{an`1q and vppan{a1q are nonnegative, while vppan`1{a1q ă 0;

hene p˚q annot be an integer. This ontradition shows that index n ` 1 is also large.

On the other hand, if vppan`1q ą vppanq, then vppan{an`1q ă 0, while vp
`
pan`1´anq{a1

˘
ě 0,

so p˚q is not integer again. Thus, vppa1q ď vppan`1q ď vppanq.
The above arguments an now be applied suessively to indies n ` 1, n ` 2, . . . , showing

that all the indies greater than n are large, and the sequene vppanq, vppan`1q, vppan`2q, . . . is
noninreasing � hene eventually onstant.
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Case 2: There is no large index.

We have vppa1q ą vppanq for all n ě k. If we had vppan`1q ă vppanq for some n ě k,

then vppan`1{a1q ă vppan{a1q ă 0 ă vppan{an`1q whih would also yield that p˚q is not integer.
Therefore, in this ase the sequene vppakq, vppak`1q, vppak`2q, . . . is nondereasing and bounded
by vppa1q from above; hene it is also eventually onstant.

Comment. Given any positive odd integer m, onsider the m-tuple p2, 22, . . . , 2m´1, 2mq. Appending
an in�nite string of 1's to this m-tuple yields an eventually onstant sequene of integers satisfying

the ondition in the statement, and shows that the rank from whih the sequene stabilises may be

arbitrarily large.

There are more sophistiated examples. The solution to part (b) of 10532, Amer. Math. Monthly,

Vol. 105 No. 8 (Ot. 1998), 775�777 (available at https://www.jstor.org/stable/2589009), shows

that, for every integer m ě 5, there exists an m-tuple pa1, a2, . . . , amq of pairwise distint positive

integers suh that gcdpa1, a2q “ gcdpa2, a3q “ ¨ ¨ ¨ “ gcdpam´1, amq “ gcdpam, a1q “ 1, and the sum

a1{a2 ` a2{a3 ` ¨ ¨ ¨ ` am´1{am ` am{a1 is an integer. Letting am`k “ a1, k “ 1, 2, . . ., extends suh an

m-tuple to an eventually onstant sequene of positive integers satisfying the ondition in the statement

of the problem at hand.

Here is the example given by the proposers of 10532. Let b1 “ 2, let bk`1 “ 1 ` b1 ¨ ¨ ¨ bk “
1` bkpbk ´1q, k ě 1, and set Bm “ b1 ¨ ¨ ¨ bm´4 “ bm´3 ´1. The m-tuple pa1, a2, . . . , amq de�ned below

satis�es the required onditions:

a1 “ 1, a2 “ p8Bm ` 1qBm ` 8, a3 “ 8Bm ` 1, ak “ bm´k for 4 ď k ď m ´ 1,

am “ a2

2
¨ a3 ¨ Bm

2
“
ˆ
1

2
p8Bm ` 1qBm ` 4

˙
¨ p8Bm ` 1q ¨ Bm

2
.

It is readily heked that a1 ă am´1 ă am´2 ă ¨ ¨ ¨ ă a3 ă a2 ă am. For further details we refer to

the solution mentioned above. Aquaintane with this example (or more elaborated examples derived

from) o�ers no advantage in takling the problem.

https://www.jstor.org/stable/2589009
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N5.

Four positive integers x, y, z, and t satisfy the relations

xy ´ zt “ x ` y “ z ` t. p˚q

Is it possible that both xy and zt are perfet squares?

(Russia)

Answer: No.

Solution 1. Arguing indiretly, assume that xy “ a2 and zt “ c2 with a, c ą 0.

Suppose that the number x ` y “ z ` t is odd. Then x and y have opposite parity, as well

as z and t. This means that both xy and zt are even, as well as xy´zt “ x`y; a ontradition.

Thus, x ` y is even, so the number s “ x`y

2
“ z`t

2
is a positive integer.

Next, we set b “ |x´y|
2

, d “ |z´t|
2
. Now the problem onditions yield

s2 “ a2 ` b2 “ c2 ` d2 (1)

and

2s “ a2 ´ c2 “ d2 ´ b2 (2)

(the last equality in (2) follows from (1)). We readily get from (2) that a, d ą 0.

In the sequel we will use only the relations (1) and (2), along with the fat that a, d, s

are positive integers, while b and c are nonnegative integers, at most one of whih may be

zero. Sine both relations are symmetri with respet to the simultaneous swappings a Ø d

and b Ø c, we assume, without loss of generality, that b ě c (and hene b ą 0). Therefore,

d2 “ 2s ` b2 ą c2, whene

d2 ą c2 ` d2

2
“ s2

2
. (3)

On the other hand, sine d2 ´ b2 is even by (2), the numbers b and d have the same parity,

so 0 ă b ď d ´ 2. Therefore,

2s “ d2 ´ b2 ě d2 ´ pd ´ 2q2 “ 4pd ´ 1q, i.e., d ď s

2
` 1. (4)

Combining (3) and (4) we obtain

2s2 ă 4d2 ď 4
´s
2

` 1
¯2

, or ps ´ 2q2 ă 8,

whih yields s ď 4.

Finally, an easy hek shows that eah number of the form s2 with 1 ď s ď 4 has a unique

representation as a sum of two squares, namely s2 “ s2 ` 02. Thus, (1) along with a, d ą 0

imply b “ c “ 0, whih is impossible.

Solution 2. We start with a omplete desription of all 4-tuples px, y, z, tq of positive integers
satisfying p˚q. As in the solution above, we notie that the numbers

s “ x ` y

2
“ z ` t

2
, p “ x ´ y

2
, and q “ z ´ t

2

are integers (we may, and will, assume that p, q ě 0). We have

2s “ xy ´ zt “ ps ` pqps ´ pq ´ ps ` qqps ´ qq “ q2 ´ p2,

so p and q have the same parity, and q ą p.
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Set now k “ q´p

2
, ℓ “ q`p

2
. Then we have s “ q2´p2

2
“ 2kℓ and hene

x “ s ` p “ 2kℓ ´ k ` ℓ, y “ s ´ p “ 2kℓ ` k ´ ℓ,

z “ s ` q “ 2kℓ ` k ` ℓ, t “ s ´ q “ 2kℓ ´ k ´ ℓ.
(5)

Reall here that ℓ ě k ą 0 and, moreover, pk, ℓq ‰ p1, 1q, sine otherwise t “ 0.

Assume now that both xy and zt are squares. Then xyzt is also a square. On the other

hand, we have

xyzt “ p2kℓ ´ k ` ℓqp2kℓ ` k ´ ℓqp2kℓ ` k ` ℓqp2kℓ ´ k ´ ℓq
“
`
4k2ℓ2 ´ pk ´ ℓq2

˘`
4k2ℓ2 ´ pk ` ℓq2

˘
“ p4k2ℓ2 ´ k2 ´ ℓ2q2 ´ 4k2ℓ2. (6)

Denote D “ 4k2ℓ2 ´ k2 ´ ℓ2 ą 0. From (6) we get D2 ą xyzt. On the other hand,

pD ´ 1q2 “ D2 ´ 2p4k2ℓ2 ´ k2 ´ ℓ2q ` 1 “ pD2 ´ 4k2ℓ2q ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2

“ xyzt ´ p2k2 ´ 1qp2ℓ2 ´ 1q ` 2 ă xyzt,

sine ℓ ě 2 and k ě 1. Thus pD ´ 1q2 ă xyzt ă D2
, and xyzt annot be a perfet square; a

ontradition.

Comment. The �rst part of Solution 2 shows that all 4-tuples of positive integers x ě y, z ě t

satisfying p˚q have the form (5), where ℓ ě k ą 0 and ℓ ě 2. The onverse is also true: every pair

of positive integers ℓ ě k ą 0, exept for the pair k “ ℓ “ 1, generates via (5) a 4-tuple of positive

integers satisfying p˚q.
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N6.

Let f : t1, 2, 3, . . .u Ñ t2, 3, . . .u be a funtion suh that fpm`nq | fpmq ` fpnq for all
pairs m,n of positive integers. Prove that there exists a positive integer c ą 1 whih divides

all values of f .

(Mexio)

Solution 1. For every positive integer m, de�ne Sm “ tn : m | fpnqu.
Lemma. If the set Sm is in�nite, then Sm “ td, 2d, 3d, . . .u “ d ¨ Zą0 for some positive integer d.

Proof. Let d “ minSm; the de�nition of Sm yields m | fpdq.
Whenever n P Sm and n ą d, we have m | fpnq | fpn ´ dq ` fpdq, so m | fpn ´ dq and

therefore n ´ d P Sm. Let r ď d be the least positive integer with n ” r pmod dq; repeating
the same step, we an see that n ´ d, n ´ 2d, . . . , r P Sm. By the minimality of d, this shows

r “ d and therefore d | n.
Starting from an arbitrarily large element of Sm, the proess above reahes all multiples

of d; so they all are elements of Sm. l

The solution for the problem will be split into two ases.

Case 1: The funtion f is bounded.

Call a prime p frequent if the set Sp is in�nite, i.e., if p divides fpnq for in�nitely many

positive integers n; otherwise all p sporadi. Sine the funtion f is bounded, there are only

a �nite number of primes that divide at least one fpnq; so altogether there are �nitely many

numbers n suh that fpnq has a sporadi prime divisor. Let N be a positive integer, greater

than all those numbers n.

Let p1, . . . , pk be the frequent primes. By the lemma we have Spi “ di ¨ Zą0 for some di.

Consider the number

n “ Nd1d2 ¨ ¨ ¨ dk ` 1.

Due to n ą N , all prime divisors of fpnq are frequent primes. Let pi be any frequent prime

divisor of fpnq. Then n P Spi, and therefore di | n. But n ” 1 pmod diq, whih means di “ 1.

Hene Spi “ 1 ¨ Zą0 “ Zą0 and therefore pi is a ommon divisor of all values fpnq.
Case 2: f is unbounded.

We prove that fp1q divides all fpnq.
Let a “ fp1q. Sine 1 P Sa, by the lemma it su�es to prove that Sa is an in�nite set.

Call a positive integer p a peak if fppq ą max
`
fp1q, . . . , fpp ´ 1q

˘
. Sine f is not bounded,

there are in�nitely many peaks. Let 1 “ p1 ă p2 ă . . . be the sequene of all peaks, and let

hk “ fppkq. Notie that for any peak pi and for any k ă pi, we have fppiq | fpkq ` fppi ´ kq ă
2fppiq, hene

fpkq ` fppi ´ kq “ fppiq “ hi. p1q
By the pigeonhole priniple, among the numbers h1, h2, . . . there are in�nitely many that

are ongruent modulo a. Let k0 ă k1 ă k2 ă . . . be an in�nite sequene of positive integers

suh that hk0 ” hk1 ” . . . pmod aq. Notie that

fppki ´ pk0q “ fppkiq ´ fppk0q “ hki ´ hk0 ” 0 pmod aq,

so pki ´ pk0 P Sa for all i “ 1, 2, . . .. This provides in�nitely many elements in Sa.

Hene, Sa is an in�nite set, and therefore fp1q “ a divides fpnq for every n.

Comment. As an extension of the solution above, it an be proven that if f is not bounded then

fpnq “ an with a “ fp1q.
Take an arbitrary positive integer n; we will show that fpn ` 1q “ fpnq ` a. Then it follows by

indution that fpnq “ an.
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Take a peak p suh that p ą n ` 2 and h “ fppq ą fpnq ` 2a. By (1) we have fpp ´ 1q “
fppq ´ fp1q “ h ´ a and fpn ` 1q “ fppq ´ fpp ´ n ´ 1q “ h ´ fpp ´ n ´ 1q. From h ´ a “ fpp ´ 1q |
fpnq ` fpp ´ n ´ 1q ă fpnq ` h ă 2ph ´ aq we get fpnq ` fpp ´ n ´ 1q “ h ´ a. Then

fpn ` 1q ´ fpnq “
`
h ´ fpp ´ n ´ 1q

˘
´
`
h ´ a ´ fpp ´ n ´ 1q

˘
“ a.

On the other hand, there exists a wide family of bounded funtions satisfying the required proper-

ties. Here we present a few examples:

fpnq “ c; fpnq “
#
2c if n is even

c if n is odd;

fpnq “
#
2018c if n ď 2018

c if n ą 2018.

Solution 2. Let dn “ gcd
`
fpnq, fp1q

˘
. From dn`1 | fp1q and dn`1 | fpn ` 1q | fpnq ` fp1q,

we an see that dn`1 | fpnq; then dn`1 | gcd
`
fpnq, fp1q

˘
“ dn. So the sequene d1, d2, . . .

is noninreasing in the sense that every element is a divisor of the previous elements. Let

d “ minpd1, d2, . . .q “ gcdpd1.d2, . . .q “ gcd
`
fp1q, fp2q, . . .

˘
; we have to prove d ě 2.

For the sake of ontradition, suppose that the statement is wrong, so d “ 1; that means

there is some index n0 suh that dn “ 1 for every n ě n0, i.e., fpnq is oprime with fp1q.
Claim 1. If 2k ě n0 then fp2kq ď 2k.

Proof. By the ondition, fp2nq | 2fpnq; a trivial indution yields fp2kq | 2kfp1q. If 2k ě n0 then

fp2kq is oprime with fp1q, so fp2kq is a divisor of 2k. l

Claim 2. There is a onstant C suh that fpnq ă n ` C for every n.

Proof. Take the �rst power of 2 whih is greater than or equal to n0: let K “ 2k ě n0. By

Claim 1, we have fpKq ď K. Notie that fpn ` Kq | fpnq ` fpKq implies fpn ` Kq ď
fpnq ` fpKq ď fpnq ` K. If n “ tK ` r for some t ě 0 and 1 ď r ď K, then we onlude

fpnq ď K ` fpn ´ Kq ď 2K ` fpn ´ 2Kq ď . . . ď tK ` fprq ă n ` max
`
fp1q, fp2q, . . . , fpKq

˘
,

so the laim is true with C “ max
`
fp1q, . . . , fpKq

˘
. l

Claim 3. If a, b P Zą0 are oprime then gcd
`
fpaq, fpbq

˘
| fp1q. In partiular, if a, b ě n0 are

oprime then fpaq and fpbq are oprime.

Proof. Let d “ gcd
`
fpaq, fpbq

˘
. We an repliate Eulid's algorithm. Formally, apply indution

on a ` b. If a “ 1 or b “ 1 then we already have d | fp1q.
Without loss of generality, suppose 1 ă a ă b. Then d | fpaq and d | fpbq | fpaq ` fpb ´ aq,

so d | fpb´aq. Therefore d divides gcd
`
fpaq, fpb´aq

˘
whih is a divisor of fp1q by the indution

hypothesis. l

Let p1 ă p2 ă . . . be the sequene of all prime numbers; for every k, let qk be the lowest

power of pk with qk ě n0. (Notie that there are only �nitely many positive integers with

qk ‰ pk.)

Take a positive integer N , and onsider the numbers

fp1q, fpq1q, fpq2q, . . . , fpqNq.
Here we have N ` 1 numbers, eah being greater than 1, and they are pairwise oprime by

Claim 3. Therefore, they have at least N `1 di�erent prime divisors in total, and their greatest

prime divisor is at least pN`1. Hene, maxpfp1q, fpq1q, . . . , fpqNqq ě pN`1.

Choose N suh that maxpq1, . . . , qNq “ pN (this is ahieved if N is su�iently large), and

pN`1 ´ pN ą C (that is possible, beause there are arbitrarily long gaps between the primes).

Then we establish a ontradition

pN`1 ď maxpfp1q, fpq1q, . . . , fpqNqq ă maxp1 ` C, q1 ` C, . . . , qN ` Cq “ pN ` C ă pN`1

whih proves the statement.
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N7.

Let n ě 2018 be an integer, and let a1, a2, . . . , an, b1, b2, . . . , bn be pairwise distint

positive integers not exeeding 5n. Suppose that the sequene

a1

b1
,
a2

b2
, . . . ,

an

bn
p1q

forms an arithmeti progression. Prove that the terms of the sequene are equal.

(Thailand)

Solution. Suppose that (1) is an arithmeti progression with nonzero di�erene. Let the

di�erene be ∆ “ c
d
, where d ą 0 and c, d are oprime.

We will show that too many denominators bi should be divisible by d. To this end, for any

1 ď i ď n and any prime divisor p of d, say that the index i is p-wrong, if vppbiq ă vppdq. (vppxq
stands for the exponent of p in the prime fatorisation of x.)

Claim 1. For any prime p, all p-wrong indies are ongruent modulo p. In other words, the

p-wrong indies (if they exist) are inluded in an arithmeti progression with di�erene p.

Proof. Let α “ vppdq. For the sake of ontradition, suppose that i and j are p-wrong indies

(i.e., none of bi and bj is divisible by pα) suh that i ı j pmod pq. Then the least ommon

denominator of

ai
bi
and

aj
bj
is not divisible by pα. But this is impossible beause in their di�erene,

pi ´ jq∆ “ pi´jqc
d

, the numerator is oprime to p, but pα divides the denominator d. l

Claim 2. d has no prime divisors greater than 5.

Proof. Suppose that p ě 7 is a prime divisor of d. Among the indies 1, 2, . . . , n, at mostP
n
p

T
ă n

p
` 1 are p-wrong, so p divides at least

p´1

p
n ´ 1 of b1, . . . , bn. Sine these denominators

are distint,

5n ě max
 
bi : p | bi

(
ě
ˆ
p ´ 1

p
n ´ 1

˙
p “ pp ´ 1qpn ´ 1q ´ 1 ě 6pn ´ 1q ´ 1 ą 5n,

a ontradition. l

Claim 3. For every 0 ď k ď n ´ 30, among the denominators bk`1, bk`2, . . . , bk`30, at least

ϕp30q “ 8 are divisible by d.

Proof. By Claim 1, the 2-wrong, 3-wrong and 5-wrong indies an be overed by three arithmeti

progressions with di�erenes 2, 3 and 5. By a simple inlusion-exlusion, p2´1q¨p3´1q¨p5´1q “ 8

indies are not overed; by Claim 2, we have d | bi for every unovered index i. l

Claim 4. |∆| ă 20
n´2

and d ą n´2
20

.

Proof. From the sequene (1), remove all frations with bn ă n
2
, There remain at least

n
2

frations, and they annot exeed

5n
n{2

“ 10. So we have at least

n
2
elements of the arithmeti

progression (1) in the interval p0, 10s, hene the di�erene must be below 10
n{2´1

“ 20
n´2

.

The seond inequality follows from

1
d

ď |c|
d

“ |∆|. l

Now we have everything to get the �nal ontradition. By Claim 3, we have d | bi for at
least

X
n
30

\
¨ 8 indies i. By Claim 4, we have d ě n´2

20
. Therefore,

5n ě max
 
bi : d | bi

(
ě
´Y n

30

]
¨ 8
¯

¨ d ą
´ n

30
´ 1

¯
¨ 8 ¨ n ´ 2

20
ą 5n.

Comment 1. It is possible that all terms in (1) are equal, for example with ai “ 2i´1 and bi “ 4i´2

we have

ai
bi

“ 1
2
.

Comment 2. The bound 5n in the statement is far from sharp; the solution above an be modi�ed

to work for 9n. For large n, the bound 5n an be replaed by n
3

2
´ε
.
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