English (eng), day 1

Problem 1. Let \mathbb{Z} be the set of integers. Determine all functions $f: \mathbb{Z} \rightarrow \mathbb{Z}$ such that, for all integers a and b,

$$
f(2 a)+2 f(b)=f(f(a+b)) .
$$

Problem 2. In triangle $A B C$, point A_{1} lies on side $B C$ and point B_{1} lies on side $A C$. Let P and Q be points on segments $A A_{1}$ and $B B_{1}$, respectively, such that $P Q$ is parallel to $A B$. Let P_{1} be a point on line $P B_{1}$, such that B_{1} lies strictly between P and P_{1}, and $\angle P P_{1} C=\angle B A C$. Similarly, let Q_{1} be a point on line $Q A_{1}$, such that A_{1} lies strictly between Q and Q_{1}, and $\angle C Q_{1} Q=\angle C B A$.

Prove that points P, Q, P_{1}, and Q_{1} are concyclic.
Problem 3. A social network has 2019 users, some pairs of whom are friends. Whenever user A is friends with user B, user B is also friends with user A. Events of the following kind may happen repeatedly, one at a time:

Three users A, B, and C such that A is friends with both B and C, but B and C are not friends, change their friendship statuses such that B and C are now friends, but A is no longer friends with B, and no longer friends with C. All other friendship statuses are unchanged.

Initially, 1010 users have 1009 friends each, and 1009 users have 1010 friends each. Prove that there exists a sequence of such events after which each user is friends with at most one other user.

Problem 4. Find all pairs (k, n) of positive integers such that

$$
k!=\left(2^{n}-1\right)\left(2^{n}-2\right)\left(2^{n}-4\right) \cdots\left(2^{n}-2^{n-1}\right)
$$

Problem 5. The Bank of Bath issues coins with an H on one side and a T on the other. Harry has n of these coins arranged in a line from left to right. He repeatedly performs the following operation: if there are exactly $k>0$ coins showing H, then he turns over the $k^{\text {th }}$ coin from the left; otherwise, all coins show T and he stops. For example, if $n=3$ the process starting with the configuration THT would be THT $\rightarrow H H T \rightarrow H T T \rightarrow T T T$, which stops after three operations.
(a) Show that, for each initial configuration, Harry stops after a finite number of operations.
(b) For each initial configuration C, let $L(C)$ be the number of operations before Harry stops. For example, $L(T H T)=3$ and $L(T T T)=0$. Determine the average value of $L(C)$ over all 2^{n} possible initial configurations C.

Problem 6. Let I be the incentre of acute triangle $A B C$ with $A B \neq A C$. The incircle ω of $A B C$ is tangent to sides $B C, C A$, and $A B$ at D, E, and F, respectively. The line through D perpendicular to $E F$ meets ω again at R. Line $A R$ meets ω again at P. The circumcircles of triangles $P C E$ and $P B F$ meet again at Q.
Prove that lines $D I$ and $P Q$ meet on the line through A perpendicular to $A I$.

