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Problems

Algebra

A1. Let n be an integer, and let A be a subset of t0, 1, 2, 3, . . . , 5nu consisting of 4n ` 2

numbers. Prove that there exist a, b, c P A such that a ă b ă c and c` 2a ą 3b.

A2. For every integer n ě 1 consider the nˆn table with entry
Z

ij

n` 1

^
at the intersection

of row i and column j, for every i “ 1, . . . , n and j “ 1, . . . , n. Determine all integers n ě 1 for
which the sum of the n2 entries in the table is equal to 1

4
n2pn ´ 1q.

A3. Given a positive integer n, find the smallest value of
Ya1
1

]
`
Ya2
2

]
` ¨ ¨ ¨ `

Yan
n

]
over

all permutations pa1, a2, . . . , anq of p1, 2, . . . , nq.

A4. Show that for all real numbers x1, . . . , xn the following inequality holds:

nÿ
i“1

nÿ
j“1

b
|xi ´ xj | ď

nÿ
i“1

nÿ
j“1

b
|xi ` xj |.

A5. Let n ě 2 be an integer, and let a1, a2, . . . , an be positive real numbers such that
a1 ` a2 ` ¨ ¨ ¨ ` an “ 1. Prove that

nÿ
k“1

ak

1´ ak
pa1 ` a2 ` ¨ ¨ ¨ ` ak´1q2 ă 1

3
.

A6. Let A be a finite set of (not necessarily positive) integers, and let m ě 2 be an integer.
Assume that there exist non-empty subsets B1, B2, B3, . . . , Bm of A whose elements add up to
the sums m1, m2, m3, . . . , mm, respectively. Prove that A contains at least m{2 elements.

A7. Let n ě 1 be an integer, and let x0, x1, . . . , xn`1 be n ` 2 non-negative real numbers
that satisfy xixi`1 ´ x2

i´1
ě 1 for all i “ 1, 2, . . . , n. Show that

x0 ` x1 ` ¨ ¨ ¨ ` xn ` xn`1 ą
ˆ
2n

3

˙
3{2

.

A8. Determine all functions f : RÑ R that satisfy`
fpaq ´ fpbq˘ `fpbq ´ fpcq˘ `fpcq ´ fpaq˘ “ fpab2 ` bc2 ` ca2q ´ fpa2b` b2c` c2aq

for all real numbers a, b, c.
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Combinatorics

C1. Let S be an infinite set of positive integers, such that there exist four pairwise distinct
a, b, c, d P S with gcdpa, bq ‰ gcdpc, dq. Prove that there exist three pairwise distinct x, y, z P S
such that gcdpx, yq “ gcdpy, zq ‰ gcdpz, xq.

C2. Let n ě 3 be an integer. An integer m ě n` 1 is called n-colourful if, given infinitely
many marbles in each of n colours C1, C2, . . . , Cn, it is possible to place m of them around a
circle so that in any group of n ` 1 consecutive marbles there is at least one marble of colour
Ci for each i “ 1, . . . , n.

Prove that there are only finitely many positive integers which are not n-colourful. Find
the largest among them.

C3. A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are
arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves;
in the kth move, he swaps the positions of the two thimbles adjacent to thimble k.

Prove that there exists a value of k such that, in the kth move, the thimblerigger swaps
some thimbles a and b such that a ă k ă b.

C4. The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly
one direct one-way road between them. We say that a path from X to Y is a sequence of roads
such that one can move from X to Y along this sequence without returning to an already
visited city. A collection of paths is called diverse if no road belongs to two or more paths in
the collection.

Let A and B be two distinct cities in Anisotropy. Let NAB denote the maximal number of
paths in a diverse collection of paths from A to B. Similarly, let NBA denote the maximal num-
ber of paths in a diverse collection of paths from B to A. Prove that the equality NAB “ NBA

holds if and only if the number of roads going out from A is the same as the number of roads
going out from B.

C5. Let n and k be two integers with n ą k ě 1. There are 2n ` 1 students standing in
a circle. Each student S has 2k neighbours— namely, the k students closest to S on the right,
and the k students closest to S on the left.

Suppose that n ` 1 of the students are girls, and the other n are boys. Prove that there is
a girl with at least k girls among her neighbours.

C6. A hunter and an invisible rabbit play a game on an infinite square grid. First the
hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses
a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter,
and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent
if they share a side). The hunter wins if after some finite time either

• the rabbit cannot move; or

• the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.
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C7. Consider a checkered 3m ˆ 3m square, where m is an integer greater than 1. A frog
sits on the lower left corner cell S and wants to get to the upper right corner cell F . The frog
can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of
cells is called blocking if the frog cannot reach F from S when all the cells of X are sticky. A
blocking set is minimal if it does not contain a smaller blocking set.

(a) Prove that there exists a minimal blocking set containing at least 3m2 ´ 3m cells.

(b) Prove that every minimal blocking set contains at most 3m2 cells.

Note. An example of a minimal blocking set for m “ 2 is shown below. Cells of the set X are marked
by letters x.

S

F

x

x

x

x

xx

C8. Determine the largest N for which there exists a table T of integers with N rows and
100 columns that has the following properties:

(i) Every row contains the numbers 1, 2, . . . , 100 in some order.

(ii) For any two distinct rows r and s, there is a column c such that |T pr, cq ´ T ps, cq| ě 2.

Here T pr, cq means the number at the intersection of the row r and the column c.
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Geometry

G1. Let ABCD be a parallelogram such that AC “ BC. A point P is chosen on the
extension of the segment AB beyond B. The circumcircle of the triangle ACD meets the
segment PD again at Q, and the circumcircle of the triangle APQ meets the segment PC

again at R. Prove that the lines CD, AQ, and BR are concurrent.

G2. Let ABCD be a convex quadrilateral circumscribed around a circle with centre I.
Let ω be the circumcircle of the triangle ACI. The extensions of BA and BC beyond A and
C meet ω at X and Z, respectively. The extensions of AD and CD beyond D meet ω at Y
and T , respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals
ADTX and CDY Z are equal.

G3.
Version 1. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set consisting of n2 quadrilaterals such that all their
vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in F .

Determine the largest possible sum of areas of all n2 quadrilaterals in F .
Version 2. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set of polygons such that all vertices of polygons in F lie
in S, and each point in S is a vertex of exactly one of the polygons in F .

Determine the largest possible sum of areas of all polygons in F .

G4. Let ABCD be a quadrilateral inscribed in a circle Ω. Let the tangent to Ω at D

intersect the rays BA and BC at points E and F , respectively. A point T is chosen inside the
triangle ABC so that TE ‖ CD and TF ‖ AD. Let K ‰ D be a point on the segment DF

such that TD “ TK. Prove that the lines AC, DT and BK intersect at one point.

G5. Let ABCD be a cyclic quadrilateral whose sides have pairwise different lengths. Let
O be the circumcentre of ABCD. The internal angle bisectors of =ABC and =ADC meet AC
at B1 and D1, respectively. Let OB be the centre of the circle which passes through B and is
tangent to AC at D1. Similarly, let OD be the centre of the circle which passes through D and
is tangent to AC at B1.

Assume that BD1 ‖ DB1. Prove that O lies on the line OBOD.

G6. Determine all integers n ě 3 satisfying the following property: every convex n-gon
whose sides all have length 1 contains an equilateral triangle of side length 1.

(Every polygon is assumed to contain its boundary.)
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G7. A point D is chosen inside an acute-angled triangle ABC with AB ą AC so that
=BAD “ =DAC. A point E is constructed on the segment AC so that =ADE “ =DCB.
Similarly, a point F is constructed on the segment AB so that =ADF “ =DBC. A point
X is chosen on the line AC so that CX “ BX . Let O1 and O2 be the circumcentres of the
triangles ADC and DXE. Prove that the lines BC, EF , and O1O2 are concurrent.

G8. Let ω be the circumcircle of a triangle ABC, and let ΩA be its excircle which is tangent
to the segment BC. Let X and Y be the intersection points of ω and ΩA. Let P and Q be the
projections of A onto the tangent lines to ΩA at X and Y , respectively. The tangent line at P
to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of
the triangle AQY at a point R. Prove that AR K BC.
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Number Theory

N1. Determine all integers n ě 1 for which there exists a pair of positive integers pa, bq
such that no cube of a prime divides a2 ` b` 3 and

ab` 3b` 8

a2 ` b` 3
“ n.

N2. Let n ě 100 be an integer. The numbers n, n ` 1, . . . , 2n are written on n ` 1 cards,
one number per card. The cards are shuffled and divided into two piles. Prove that one of the
piles contains two cards such that the sum of their numbers is a perfect square.

N3. Find all positive integers n with the following property: the k positive divisors of n
have a permutation pd1, d2, . . . , dkq such that for every i “ 1, 2, . . . , k, the number d1 ` ¨ ¨ ¨ ` di
is a perfect square.

N4. Alice is given a rational number r ą 1 and a line with two points B ‰ R, where
point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by
performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer
k, and a bead to move. If that bead is placed at point X , and the other bead is placed at Y ,
then Alice moves the chosen bead to point X 1 with

ÝÝÑ
Y X 1 “ rk

ÝÝÑ
Y X .

Alice’s goal is to move the red bead to the point B. Find all rational numbers r ą 1 such
that Alice can reach her goal in at most 2021 moves.

N5. Prove that there are only finitely many quadruples pa, b, c, nq of positive integers such
that

n! “ an´1 ` bn´1 ` cn´1.

N6. Determine all integers n ě 2 with the following property: every n pairwise distinct
integers whose sum is not divisible by n can be arranged in some order a1, a2, . . . , an so that
n divides 1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an.

N7. Let a1, a2, a3, . . . be an infinite sequence of positive integers such that an`2m divides
an`an`m for all positive integers n and m. Prove that this sequence is eventually periodic, i.e.
there exist positive integers N and d such that an “ an`d for all n ą N .

N8. For a polynomial P pxq with integer coefficients let P 1pxq “ P pxq and P k`1pxq “
P pP kpxqq for k ě 1. Find all positive integers n for which there exists a polynomial P pxq with
integer coefficients such that for every integer m ě 1, the numbers Pmp1q, . . . , Pmpnq leave
exactly rn{2ms distinct remainders when divided by n.
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Solutions

Algebra

A1. Let n be an integer, and let A be a subset of t0, 1, 2, 3, . . . , 5nu consisting of 4n ` 2

numbers. Prove that there exist a, b, c P A such that a ă b ă c and c` 2a ą 3b.

Solution 1. (By contradiction) Suppose that there exist 4n ` 2 non-negative integers x0 ă
x1 ă ¨ ¨ ¨ ă x4n`1 that violate the problem statement. Then in particular x4n`1 ` 2xi ď 3xi`1

for all i “ 0, . . . , 4n´ 1, which gives

x4n`1 ´ xi ě 3

2
px4n`1 ´ xi`1q.

By a trivial induction we then get

x4n`1 ´ xi ě
ˆ
3

2

˙4n´i

px4n`1 ´ x4nq,

which for i “ 0 yields the contradiction

x4n`1 ´ x0 ě
ˆ
3

2

˙4n

px4n`1 ´ x4nq “
ˆ
81

16

˙n

px4n`1 ´ x4nq ą 5n ¨ 1.

Solution 2. Denote the maximum element of A by c. For k “ 0, . . . , 4n´ 1 let

Ak “
 
x P A : p1´ p2{3qkqc ď x ă p1´ p2{3qk`1qc( .

Note that
p1´ p2{3q4nqc “ c´ p16{81qnc ą c´ p1{5qnc ě c´ 1,

which shows that the sets A0, A1, . . . , A4n´1 form a partition of A z tcu. Since A z tcu has 4n` 1

elements, by the pigeonhole principle some set Ak does contain at least two elements of A z tcu.
Denote these two elements a and b and assume a ă b, so that a ă b ă c. Then

c` 2a ě c ` 2p1´ p2{3qkqc “ p3´ 2p2{3qkqc “ 3p1´ p2{3qk`1qc ą 3b,

as desired.
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A2. For every integer n ě 1 consider the nˆn table with entry
Z

ij

n` 1

^
at the intersection

of row i and column j, for every i “ 1, . . . , n and j “ 1, . . . , n. Determine all integers n ě 1 for
which the sum of the n2 entries in the table is equal to 1

4
n2pn ´ 1q.

Answer: All integers n for which n ` 1 is a prime.

Solution 1. First, observe that every pair x, y of real numbers for which the sum x ` y is
integer satisfies

txu ` tyu ě x` y ´ 1. (1)

The inequality is strict if x and y are integers, and it holds with equality otherwise.
We estimate the sum S as follows.

2S “ ÿ
1ďi,jďn

ˆZ
ij

n ` 1

^
`
Z

ij

n` 1

^˙
“ ÿ

1ďi,jďn

ˆZ
ij

n` 1

^
`
Zpn ` 1´ iqj

n` 1

^˙

ě ÿ
1ďi,jďn

pj ´ 1q “ pn ´ 1qn2

2
.

The inequality in the last line follows from (1) by setting x “ ij{pn ` 1q and y “ pn ` 1 ´
iqj{pn ` 1q, so that x` y “ j is integral.

Now S “ 1

4
n2pn´ 1q if and only if the inequality in the last line holds with equality, which

means that none of the values ij{pn ` 1q with 1 ď i, j ď n may be integral.
Hence, if n ` 1 is composite with factorisation n ` 1 “ ab for 2 ď a, b ď n, one gets a

strict inequality for i “ a and j “ b. If n ` 1 is a prime, then ij{pn ` 1q is never integral and
S “ 1

4
n2pn ´ 1q.

Solution 2. To simplify the calculation with indices, extend the table by adding a phantom
column of index 0 with zero entries (which will not change the sum of the table). Fix a row i

with 1 ď i ď n, and let d :“ gcdpi, n` 1q and k :“ pn` 1q{d. For columns j “ 0, . . . , n, define
the remainder rj :“ ij mod pn ` 1q. We first prove the following
Claim. For every integer g with 1 ď g ď d, the remainders rj with indices j in the range

pg ´ 1qk ď j ď gk ´ 1 (2)

form a permutation of the k numbers 0 ¨ d, 1 ¨ d, 2 ¨ d, . . . , pk ´ 1q ¨ d.
Proof. If rj1 “ rj holds for two indices j1 and j in (2), then ipj1´jq ” 0 mod pn ` 1q, so that j1´j

is a multiple of k; since |j1´j| ď k´1, this implies j1 “ j. Hence, the k remainders are pairwise
distinct. Moreover, each remainder rj “ ij mod pn ` 1q is a multiple of d “ gcdpi, n` 1q. This
proves the claim.

We then have

nÿ
j“0

rj “
dÿ

g“1

pn`1q{d´1ÿ
ℓ“0

ℓd “ d2 ¨ 1
2

ˆ
n ` 1

d
´ 1

˙
n ` 1

d
“ pn` 1´ dqpn` 1q

2
. (3)

By using (3), compute the sum Si of row i as follows:

Si “
nÿ

j“0

Z
ij

n` 1

^
“

nÿ
j“0

ij ´ rj

n` 1
“ i

n ` 1

nÿ
j“0

j ´ 1

n ` 1

nÿ
j“0

rj

“ i

n` 1
¨ npn ` 1q

2
´ 1

n` 1
¨ pn` 1´ dqpn` 1q

2
“ pin ´ n´ 1` dq

2
. (4)
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Equation (4) yields the following lower bound on the row sum Si, which holds with equality if
and only if d “ gcdpi, n` 1q “ 1:

Si ě pin ´ n´ 1` 1q
2

“ npi´ 1q
2

. (5)

By summing up the bounds (5) for the rows i “ 1, . . . , n, we get the following lower bound for
the sum of all entries in the table

nÿ
i“1

Si ě
nÿ

i“1

n

2
pi´ 1q “ n2pn ´ 1q

4
. (6)

In (6) we have equality if and only if equality holds in (5) for each i “ 1, . . . , n, which happens
if and only if gcdpi, n ` 1q “ 1 for each i “ 1, . . . , n, which is equivalent to the fact that n ` 1

is a prime. Thus the sum of the table entries is 1

4
n2pn ´ 1q if and only if n ` 1 is a prime.

Comment. To simplify the answer, in the problem statement one can make a change of variables by
introducing m :“ n` 1 and writing everything in terms of m. The drawback is that the expression for
the sum will then be 1

4
pm´ 1q2pm´ 2q which seems more artificial.
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A3. Given a positive integer n, find the smallest value of
Ya1
1

]
`
Ya2
2

]
` ¨ ¨ ¨ `

Yan
n

]
over

all permutations pa1, a2, . . . , anq of p1, 2, . . . , nq.

Answer: The minimum of such sums is tlog2 nu` 1; so if 2k ď n ă 2k`1, the minimum is k` 1.

Solution 1. Suppose that 2k ď n ă 2k`1 with some nonnegative integer k. First we show a
permutation pa1, a2, . . . , anq such that

X
a1
1

\` X
a2
2

\` ¨ ¨ ¨ ` X
an
n

\ “ k` 1; then we will prove thatX
a1
1

\` X
a2
2

\` ¨ ¨ ¨ ` X
an
n

\ ě k ` 1 for every permutation. Hence, the minimal possible value will
be k ` 1.

I. Consider the permutation

pa1q “ p1q, pa2, a3q “ p3, 2q, pa4, a5, a6, a7q “ p7, 4, 5, 6q, . . .

pa2k´1, . . . , a2k´1q “ p2k ´ 1, 2k´1, 2k´1 ` 1, . . . , 2k ´ 2q,
pa2k , . . . , anq “ pn, 2k, 2k ` 1, . . . , n´ 1q.

This permutation consists of k ` 1 cycles. In every cycle pap, . . . , aqq “ pq, p, p ` 1, . . . , q ´ 1q
we have q ă 2p, so

qÿ
i“p

Z
ai

i

^
“
Z
q

p

^
`

qÿ
i“p`1

Z
i´ 1

i

^
“ 1;

The total sum over all cycles is precisely k ` 1.

II. In order to establish the lower bound, we prove a more general statement.

Claim. If b1, . . . , b2k are distinct positive integers then

2kÿ
i“1

Z
bi

i

^
ě k ` 1.

From the Claim it follows immediately that
nÿ

i“1

Yai
i

]
ě

2kÿ
i“1

Yai
i

]
ě k ` 1.

Proof of the Claim. Apply induction on k. For k “ 1 the claim is trivial,
X
b1
1

\ ě 1. Suppose
the Claim holds true for some positive integer k, and consider k ` 1.

If there exists an index j such that 2k ă j ď 2k`1 and bj ě j then

2
k`1ÿ
i“1

Z
bi

i

^
ě

2
kÿ

i“1

Z
bi

i

^
`
Z
bj

j

^
ě pk ` 1q ` 1

by the induction hypothesis, so the Claim is satisfied.
Otherwise we have bj ă j ď 2k`1 for every 2k ă j ď 2k`1. Among the 2k`1 distinct numbers

b1, . . . , b2k`1 there is some bm which is at least 2k`1; that number must be among b1 . . . , b2k .
Hence, 1 ď m ď 2k and bm ě 2k`1.

We will apply the induction hypothesis to the numbers

c1 “ b1, . . . , cm´1 “ bm´1, cm “ b2k`1, cm`1 “ bm`1, . . . , c2k “ b2k ,

so take the first 2k numbers but replace bm with b2k`1. Notice thatZ
bm

m

^
ě
Z
2k`1

m

^
“
Z
2k ` 2k

m

^
ě
Z
b2k`1 `m

m

^
“
Z
cm

m

^
` 1.
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For the other indices i with 1 ď i ď 2k, i ‰ m we have
X
bi
i

\ “ X
ci
i

\
, so

2
k`1ÿ
i“1

Z
bi

i

^
“

2
kÿ

i“1

Z
bi

i

^
ě

2
kÿ

i“1

Z
ci

i

^
` 1 ě pk ` 1q ` 1.

That proves the Claim and hence completes the solution. l

Solution 2. We present a different proof for the lower bound.

Assume again 2k ď n ă 2k`1, and let P “ t20, 21, . . . , 2ku be the set of powers of 2 among
1, 2, . . . , n. Call an integer i P t1, 2, . . . , nu and the interval ri, ais good if ai ě i.

Lemma 1. The good intervals cover the integers 1, 2, . . . , n.
Proof. Consider an arbitrary x P t1, 2 . . . , nu; we want to find a good interval ri, ais that covers x;
i.e., i ď x ď ai. Take the cycle of the permutation that contains x, that is px, ax, aax , . . .q. In
this cycle, let i be the first element with ai ě x; then i ď x ď ai. l

Lemma 2. If a good interval ri, ais covers p distinct powers of 2 then
X
ai
i

\ ě p; more formally,X
ai
i

\ ě ˇ̌ri, ais X P
ˇ̌
.

Proof. The ratio of the smallest and largest powers of 2 in the interval is at least 2p´1. By
Bernoulli’s inequality, ai

i
ě 2p´1 ě p; that proves the lemma. l

Now, by Lemma 1, the good intervals cover P . By applying Lemma 2 as well, we obtain
that

nÿ
i“1

Z
ai

i

^
“

nÿ
i is good

Z
ai

i

^
ě

nÿ
i is good

ˇ̌̌
ri, ais X P

ˇ̌̌
ě ˇ̌

P
ˇ̌ “ k ` 1.

Solution 3. We show yet another proof for the lower bound, based on the following inequality.

Lemma 3. Z
a

b

^
ě log

2

a` 1

b

for every pair a, b of positive integers.
Proof. Let t “ X

a
b

\
, so t ď a

b
and a`1

b
ď t` 1. By applying the inequality 2t ě t` 1, we obtainZ

a

b

^
“ t ě log2pt ` 1q ě log2

a` 1

b
. l

By applying the lemma to each term, we get

nÿ
i“1

Z
ai

i

^
ě

nÿ
i“1

log
2

ai ` 1

i
“

nÿ
i“1

log
2
pai ` 1q ´

nÿ
i“1

log
2
i.

Notice that the numbers a1` 1, a2` 1, . . . , an` 1 form a permutation of 2, 3, . . . , n` 1. Hence,
in the last two sums all terms cancel out, except for log

2
pn` 1q in the first sum and log

2
1 “ 0

in the second sum. Therefore,

nÿ
i“1

Z
ai

i

^
ě log

2
pn ` 1q ą k.

As the left-hand side is an integer, it must be at least k ` 1.
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A4. Show that for all real numbers x1, . . . , xn the following inequality holds:
nÿ

i“1

nÿ
j“1

b
|xi ´ xj | ď

nÿ
i“1

nÿ
j“1

b
|xi ` xj |.

Solution 1. If we add t to all the variables then the left-hand side remains constant and the
right-hand side becomes

Hptq :“
nÿ

i“1

nÿ
j“1

b
|xi ` xj ` 2t|.

Let T be large enough such that both Hp´T q and HpT q are larger than the value L of the left-
hand side of the inequality we want to prove. Not necessarily distinct points pi,j :“ ´pxi`xjq{2
together with T and ´T split the real line into segments and two rays such that on each of
these segments and rays the function Hptq is concave since fptq :“ a|ℓ` 2t| is concave on
both intervals p´8,´ℓ{2s and r´ℓ{2,`8q. Let ra, bs be the segment containing zero. Then
concavity implies Hp0q ě mintHpaq, Hpbqu and, since Hp˘T q ą L, it suffices to prove the
inequalities Hp´pxi ` xjq{2q ě L, that is to prove the original inequality in the case when all
numbers are shifted in such a way that two variables xi and xj add up to zero. In the following
we denote the shifted variables still by xi.

If i “ j, i.e. xi “ 0 for some index i, then we can remove xi which will decrease both sides
by 2

ř
k

a|xk|. Similarly, if xi`xj “ 0 for distinct i and j we can remove both xi and xj which
decreases both sides by

2
a
2|xi| ` 2 ¨ ÿ

k‰i,j

ˆa|xk ` xi| `
b
|xk ` xj |

˙
.

In either case we reduced our inequality to the case of smaller n. It remains to note that for
n “ 0 and n “ 1 the inequality is trivial.

Solution 2. For real p consider the integral

Ippq “
ż 8

0

1´ cosppxq
x
?
x

dx,

which clearly converges to a strictly positive number. By changing the variable y “ |p|x one
notices that Ippq “a|p|Ip1q. Hence, by using the trigonometric formula cospα´ βq ´ cospα`
βq “ 2 sinα sin β we obtaina|a` b|´a|a´ b| “ 1

Ip1q
ż 8

0

cosppa´ bqxq ´ cosppa` bqxq
x
?
x

dx “ 1

Ip1q
ż 8

0

2 sinpaxq sinpbxq
x
?
x

dx,

from which our inequality immediately follows:
nÿ

i“1

nÿ
j“1

b
|xi ` xj | ´

nÿ
i“1

nÿ
j“1

b
|xi ´ xj | “ 2

Ip1q
ż 8

0

`řn

i“1
sinpxixq

˘2
x
?
x

dx ě 0.

Comment 1. A more general inequality
nÿ

i“1

nÿ
j“1

|xi ´ xj |r ď
nÿ

i“1

nÿ
j“1

|xi ` xj |r

holds for any r P r0, 2s. The first solution can be repeated verbatim for any r P r0, 1s but not for r ą 1.
In the second solution, by putting xr`1 in the denominator in place of x

?
x we can prove the inequality

for any r P p0, 2q and the cases r “ 0, 2 are easy to check by hand.

Comment 2. In fact, the integral from Solution 2 can be computed explicitly, we have Ip1q “ ?
2π.
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A5. Let n ě 2 be an integer, and let a1, a2, . . . , an be positive real numbers such that
a1 ` a2 ` ¨ ¨ ¨ ` an “ 1. Prove that

nÿ
k“1

ak

1´ ak
pa1 ` a2 ` ¨ ¨ ¨ ` ak´1q2 ă 1

3
.

Solution 1. For all k ď n, let

sk “ a1 ` a2 ` ¨ ¨ ¨ ` ak and bk “ aks
2

k´1

1´ ak
,

with the convention that s0 “ 0. Note that bk is exactly a summand in the sum we need to
estimate. We shall prove the inequality

bk ă s3k ´ s3k´1

3
. (1)

Indeed, it suffices to check that

(1) ðñ 0 ă p1´ akq
`psk´1 ` akq3 ´ s3k´1

˘´ 3aks
2

k´1

ðñ 0 ă p1´ akq
`
3s2k´1

` 3sk´1ak ` a2k
˘´ 3s2k´1

ðñ 0 ă ´3aks2k´1
` 3p1´ akqsk´1ak ` p1´ akqa2k

ðñ 0 ă 3p1´ ak ´ sk´1qsk´1ak ` p1´ akqa2k
which holds since ak ` sk´1 “ sk ď 1 and ak P p0, 1q.

Thus, adding inequalities (1) for k “ 1, . . . , n, we conclude that

b1 ` b2 ` ¨ ¨ ¨ ` bn ă s3n ´ s3
0

3
“ 1

3
,

as desired.

Comment 1. There are many ways of proving (1) which can be written as

as2

1´ a
´ pa` sq3 ´ s3

3
ă 0, (2)

for non-negative a and s satisfying a` s ď 1 and a ą 0.
E.g., note that for any fixed a the expression in (2) is quadratic in s with the leading coefficient

a{p1´ aq ´ a ą 0. Hence, it is convex as a function in s, so it suffices to check the inequality at s “ 0
and s “ 1´ a. The former case is trivial and in the latter case the inequality can be rewritten as

as´ 3aspa` sq ` a3

3
ă 0,

which is trivial since a` s “ 1.

Solution 2. First, let us define

Spa1, . . . , anq :“
nÿ

k“1

ak

1´ ak
pa1 ` a2 ` ¨ ¨ ¨ ` ak´1q2.
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For some index i, denote a1 ` ¨ ¨ ¨ ` ai´1 by s. If we replace ai with two numbers ai{2 and
ai{2, i.e. replace the tuple pa1, . . . , anq with pa1, . . . , ai´1, ai{2, ai{2, ai`1, . . . , anq, the sum will
increase by

Spa1, . . . , ai{2, ai{2, . . . , anq ´ Spa1, . . . , anq “ ai{2
1´ ai{2

`
s2 ` ps` ai{2q2

˘´ ai

1´ ai
s2

“ ai
p1´ aiqp2s2 ` sai ` a2i {4q ´ p2´ aiqs2

p2´ aiqp1´ aiq
“ ai

p1´ ai ´ sqsai ` p1´ aiqa2i {4
p2´ aiqp1´ aiq ,

which is strictly positive. So every such replacement strictly increases the sum. By repeating
this process and making maximal number in the tuple tend to zero, we keep increasing the sum
which will converge to ż

1

0

x2 dx “ 1

3
.

This completes the proof.

Solution 3. We sketch a probabilistic version of the first solution. Let x1, x2, x3 be drawn
uniformly and independently at random from the segment r0, 1s. Let I1 Y I2 Y ¨ ¨ ¨ Y In be a
partition of r0, 1s into segments of length a1, a2, . . . , an in this order. Let Jk :“ I1 Y ¨ ¨ ¨ Y Ik´1

for k ě 2 and J1 :“ H. Then

1

3
“

nÿ
k“1

Ptx1 ě x2, x3; x1 P Iku

“
nÿ

k“1

´
Ptx1 P Ik; x2, x3 P Jku ` 2 ¨ Ptx1 ě x2; x1, x2 P Ik; x3 P Jku

` Ptx1 ě x2, x3; x1, x2, x3 P Iku
¯

“
nÿ

k“1

ˆ
akpa1 ` ¨ ¨ ¨ ` ak´1q2 ` 2 ¨ a

2

k

2
¨ pa1 ` ¨ ¨ ¨ ` ak´1q ` a3k

3

˙
ą

nÿ
k“1

ˆ
akpa1 ` ¨ ¨ ¨ ` ak´1q2 ` a2kpa1 ` ¨ ¨ ¨ ` ak´1q ¨ a1 ` ¨ ¨ ¨ ` ak´1

1´ ak

˙
,

where for the last inequality we used that 1 ´ ak ě a1 ` ¨ ¨ ¨ ` ak´1. This completes the proof
since

ak ` a2k
1´ ak

“ ak

1´ ak
.
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A6. Let A be a finite set of (not necessarily positive) integers, and let m ě 2 be an integer.
Assume that there exist non-empty subsets B1, B2, B3, . . . , Bm of A whose elements add up to
the sums m1, m2, m3, . . . , mm, respectively. Prove that A contains at least m{2 elements.

Solution. Let A “ ta1, . . . , aku. Assume that, on the contrary, k “ |A| ă m{2. Let
si :“

ÿ
j:ajPBi

aj

be the sum of elements of Bi. We are given that si “ mi for i “ 1, . . . , m.
Now consider all mm expressions of the form

fpc1, . . . , cmq :“ c1s1 ` c2s2 ` . . .` cmsm, ci P t0, 1, . . . , m´ 1u for all i “ 1, 2, . . . , m.

Note that every number fpc1, . . . , cmq has the form
α1a1 ` . . .` αkak, αi P t0, 1, . . . , mpm´ 1qu.

Hence, there are at most pmpm ´ 1q ` 1qk ă m2k ă mm distinct values of our expressions;
therefore, at least two of them coincide.

Since si “ mi, this contradicts the uniqueness of representation of positive integers in the
base-m system.

Comment 1. For other rapidly increasing sequences of sums of Bi’s the similar argument also
provides lower estimates on k “ |A|. For example, if the sums of Bi are equal to 1!, 2!, 3!, . . ., m!,
then for any fixed ε ą 0 and large enough m we get k ě p1{2 ´ εqm. The proof uses the fact that the
combinations

ř
cii! with ci P t0, 1, . . . , iu are all distinct.

Comment 2. The problem statement holds also if A is a set of real numbers (not necessarily integers),
the above proofs work in the real case.
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A7. Let n ě 1 be an integer, and let x0, x1, . . . , xn`1 be n ` 2 non-negative real numbers
that satisfy xixi`1 ´ x2

i´1
ě 1 for all i “ 1, 2, . . . , n. Show that

x0 ` x1 ` ¨ ¨ ¨ ` xn ` xn`1 ą
ˆ
2n

3

˙
3{2

.

Solution 1.
Lemma 1.1. If a, b, c are non-negative numbers such that ab´ c2 ě 1, then

pa` 2bq2 ě pb` 2cq2 ` 6.

Proof. pa` 2bq2 ´ pb` 2cq2 “ pa´ bq2 ` 2pb´ cq2 ` 6pab´ c2q ě 6. l
Lemma 1.2.

?
1` ¨ ¨ ¨ ` ?n ą 2

3
n3{2.

Proof. Bernoulli’s inequality p1`tq3{2 ą 1` 3

2
t for 0 ą t ě ´1 (or, alternatively, a straightforward

check) gives

pk ´ 1q3{2 “ k3{2
ˆ
1´ 1

k

˙3{2
ą k3{2

ˆ
1´ 3

2k

˙
“ k3{2 ´ 3

2

?
k. p˚q

Summing up p˚q over k “ 1, 2, . . . , n yields

0 ą n3{2 ´ 3

2

´?
1` ¨ ¨ ¨ ` ?n

¯
. l

Now put yi :“ 2xi`xi`1 for i “ 0, 1, . . . , n. We get y0 ě 0 and y2i ě y2i´1
`6 for i “ 1, 2, . . . , n

by Lemma 1.1. Thus, an easy induction on i gives yi ě
?
6i. Using this estimate and Lemma

1.2 we get

3px0 ` . . .` xn`1q ě y1 ` . . .` yn ě
?
6
´?

1`?2` . . .`?n
¯
ą ?

6 ¨ 2
3
n3{2 “ 3

ˆ
2n

3

˙3{2
.

Solution 2. Say that an index i P t0, 1, . . . , n ` 1u is good, if xi ě
b

2

3
i, otherwise call the

index i bad.
Lemma 2.1. There are no two consecutive bad indices.
Proof. Assume the contrary and consider two bad indices j, j`1 with minimal possible j. Since
0 is good, we get j ą 0, thus by minimality j ´ 1 is a good index and we have

2

3

a
jpj ` 1q ą xjxj`1 ě x2

j´1
` 1 ě 2

3
pj ´ 1q ` 1 “ 2

3
¨ j ` pj ` 1q

2

that contradicts the AM–GM inequality for numbers j and j ` 1. l
Lemma 2.2. If an index j ď n´ 1 is good, then

xj`1 ` xj`2 ě
c

2

3

´a
j ` 1`a

j ` 2
¯
.

Proof. We have

xj`1 ` xj`2 ě 2
?
xj`1xj`2 ě 2

b
x2

j ` 1 ě 2

c
2

3
j ` 1 ě

c
2

3
j ` 2

3
`
c

2

3
j ` 4

3
,

the last inequality follows from concavity of the square root function, or, alternatively, from
the AM–QM inequality for the numbers

b
2

3
j ` 2

3
and

b
2

3
j ` 4

3
. l
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Let Si “ x1 ` . . .` xi and Ti “
b

2

3
p?1` . . .`?iq.

Lemma 2.3. If an index i is good, then Si ě Ti.
Proof. Induction on i. The base case i “ 0 is clear. Assume that the claim holds for good
indices less than i and prove it for a good index i ą 0.

If i´ 1 is good, then by the inductive hypothesis we get Si “ Si´1 ` xi ě Ti´1 `
b

2

3
i “ Ti.

If i´ 1 is bad, then i ą 1, and i´ 2 is good by Lemma 2.1. Then using Lemma 2.2 and the
inductive hypothesis we get

Si “ Si´2 ` xi´1 ` xi ě Ti´2 `
c

2

3

´?
i´ 1`?i

¯
“ Ti. l

Since either n or n ` 1 is good by Lemma 2.1, Lemma 2.3 yields in both cases Sn`1 ě Tn,

and it remains to apply Lemma 1.2 from Solution 1.

Comment 1. Another way to get p˚q is the integral bound

k3{2 ´ pk ´ 1q3{2 “
ż k

k´1

3

2

?
x dx ă 3

2

?
k.

Comment 2. If xi “
a

2{3 ¨ p?i` 1q, the conditions of the problem hold. Indeed, the inequality to
check is

p?i` 1qp?i` 1` 1q ´ p?i´ 1` 1q2 ě 3{2,
that rewrites as

?
i`?

i` 1´ 2
?
i´ 1 ě pi` 1{2q ´aipi` 1q “ 1{4

i` 1{2`aipi ` 1q ,

which follows from ?
i´?

i´ 1 “ 1?
i`?

i´ 1
ą 1

2i
.

For these numbers we have x0` . . .`xn`1 “ `2n3 ˘3{2`Opnq, thus the multiplicative constant p2{3q3{2
in the problem statement is sharp.
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A8. Determine all functions f : RÑ R that satisfy`
fpaq ´ fpbq˘ `fpbq ´ fpcq˘ `fpcq ´ fpaq˘ “ fpab2 ` bc2 ` ca2q ´ fpa2b` b2c` c2aq

for all real numbers a, b, c.

Answer: fpxq “ αx` β or fpxq “ αx3 ` β where α P t´1, 0, 1u and β P R.
Solution. It is straightforward to check that above functions satisfy the equation. Now let fpxq
satisfy the equation, which we denote Epa, b, cq. Then clearly fpxq`C also does; therefore, we
may suppose without loss of generality that fp0q “ 0.We start with proving
Lemma. Either fpxq ” 0 or f is injective.
Proof. Denote by Θ Ď R2 the set of points pa, bq for which fpaq “ fpbq. Let Θ˚ “ tpx, yq P Θ :

x ‰ yu. The idea is that if pa, bq P Θ, then by Epa, b, xq we get
Ha,bpxq :“ pab2 ` bx2 ` xa2, a2b` b2x` x2aq P Θ

for all real x. Reproducing this argument starting with pa, bq P Θ˚, we get more and more
points in Θ. There are many ways to fill in the details, we give below only one of them.

Assume that pa, bq P Θ˚. Note that

g´pxq :“ pab2 ` bx2 ` xa2q ´ pa2b` b2x` x2aq “ pa´ bqpb´ xqpx´ aq
and

g`pxq :“ pab2 ` bx2 ` xa2q ` pa2b` b2x` x2aq “ px2 ` abqpa` bq ` xpa2 ` b2q.
Hence, there exists x for which both g´pxq ‰ 0 and g`pxq ‰ 0. This gives a point pα, βq “
Ha,bpxq P Θ˚ for which α ‰ ´β. Now compare Epα, 1, 0q and Epβ, 1, 0q. The left-hand side
expressions coincide, on right-hand side we get fpαq ´ fpα2q “ fpβq ´ fpβ2q, respectively.
Hence, fpα2q “ fpβ2q and we get a point pα1, β1q :“ pα2, β2q P Θ˚ with both coordinates
α1, β1 non-negative. Continuing squaring the coordinates, we get a point pγ, δq P Θ˚ for which
δ ą 5γ ě 0. Our nearest goal is to get a point p0, rq P Θ˚. If γ “ 0, this is already done. If
γ ą 0, denote by x a real root of the quadratic equation δγ2`γx2`xδ2 “ 0, which exists since
the discriminant δ4´ 4δγ3 is positive. Also x ă 0 since this equation cannot have non-negative
root. For the point Hδ,γpxq “: p0, rq P Θ the first coordinate is 0. The difference of coordinates
equals ´r “ pδ ´ γqpγ ´ xqpx´ δq ă 0, so r ‰ 0 as desired.

Now, let p0, rq P Θ˚. We get H0,rpxq “ prx2, r2xq P Θ. Thus fprx2q “ fpr2xq for all x P R.
Replacing x to ´x we get fprx2q “ fpr2xq “ fp´r2xq, so f is even: pa,´aq P Θ for all a. Then
Ha,´apxq “ pa3´ax2`xa2,´a3`a2x`x2aq P Θ for all real a, x. Putting x “ 1`?5

2
a we obtain

p0, p1`?5qa3q P Θ which means that fpyq “ fp0q “ 0 for every real y. l
Hereafter we assume that f is injective and fp0q “ 0. By Epa, b, 0q we get

fpaqfpbqpfpaq ´ fpbqq “ fpa2bq ´ fpab2q. p♥q
Let κ :“ fp1q and note that κ “ fp1q ‰ fp0q “ 0 by injectivity. Putting b “ 1 in p♥q we get

κfpaqpfpaq ´ κq “ fpa2q ´ fpaq. p♣q
Subtracting the same equality for ´a we get

κpfpaq ´ fp´aqqpfpaq ` fp´aq ´ κq “ fp´aq ´ fpaq.



Shortlisted problems – solutions 25

Now, if a ‰ 0, by injectivity we get fpaq ´ fp´aq ‰ 0 and thus

fpaq ` fp´aq “ κ´ κ´1 “: λ. p♠q
It follows that

fpaq ´ fpbq “ fp´bq ´ fp´aq
for all non-zero a, b. Replace non-zero numbers a, b in p♥q with ´a,´b, respectively, and add
the two equalities. Due to p♠q we get

pfpaq ´ fpbqqpfpaqfpbq ´ fp´aqfp´bqq “ 0,

thus fpaqfpbq “ fp´aqfp´bq “ pλ´fpaqqpλ´fpbqq for all non-zero a ‰ b. If λ ‰ 0, this implies
fpaq ` fpbq “ λ that contradicts injectivity when we vary b with fixed a. Therefore, λ “ 0 and
κ “ ˘1. Thus f is odd. Replacing f with ´f if necessary (this preserves the original equation)
we may suppose that fp1q “ 1.

Now, p♣q yields fpa2q “ f 2paq. Summing relations p♥q for pairs pa, bq and pa,´bq, we get
´2fpaqf 2pbq “ ´2fpab2q, i.e. fpaqfpb2q “ fpab2q. Putting b “ ?

x for each non-negative x we
get fpaxq “ fpaqfpxq for all real a and non-negative x. Since f is odd, this multiplicativity
relation is true for all a, x. Also, from fpa2q “ f 2paq we see that fpxq ě 0 for x ě 0. Next,
fpxq ą 0 for x ą 0 by injectivity.

Assume that fpxq for x ą 0 does not have the form fpxq “ xτ for a constant τ . The known
property of multiplicative functions yields that the graph of f is dense on p0,8q2. In particular,
we may find positive b ă 1{10 for which fpbq ą 1. Also, such b can be found if fpxq “ xτ for
some τ ă 0. Then for all x we have x2 ` xb2 ` b ě 0 and so Ep1, b, xq implies that

fpb2 ` bx2 ` xq “ fpx2 ` xb2 ` bq ` pfpbq ´ 1qpfpxq ´ fpbqqpfpxq ´ 1q ě 0´ ppfpbq ´ 1q3{4
is bounded from below (the quadratic trinomial bound pt ´ fp1qqpt ´ fpbqq ě ´pfpbq ´ 1q2{4
for t “ fpxq is used). Hence, f is bounded from below on pb2 ´ 1

4b
,`8q, and since f is odd it

is bounded from above on p0, 1

4b
´ b2q. This is absurd if fpxq “ xτ for τ ă 0, and contradicts

to the above dense graph condition otherwise.
Therefore, fpxq “ xτ for x ą 0 and some constant τ ą 0. Dividing Epa, b, cq by pa´ bqpb´

cqpc ´ aq “ pab2 ` bc2 ` ca2q ´ pa2b ` b2c ` c2aq and taking a limit when a, b, c all go to 1
(the divided ratios tend to the corresponding derivatives, say, aτ´bτ

a´b
Ñ pxτ q1x“1

“ τ), we get
τ 3 “ τ ¨ 3τ´1, τ 2 “ 3τ´1, F pτq :“ 3τ{2´1{2 ´ τ “ 0. Since function F is strictly convex, it has at
most two roots, and we get τ P t1, 3u.
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Combinatorics

C1. Let S be an infinite set of positive integers, such that there exist four pairwise distinct
a, b, c, d P S with gcdpa, bq ‰ gcdpc, dq. Prove that there exist three pairwise distinct x, y, z P S
such that gcdpx, yq “ gcdpy, zq ‰ gcdpz, xq.

Solution. There exists α P S so that tgcdpα, sq | s P S, s ‰ αu contains at least two ele-
ments. Since α has only finitely many divisors, there is a d | α such that the set B “ tβ P
S | gcdpα, βq “ du is infinite. Pick γ P S so that gcdpα, γq ‰ d. Pick β1, β2 P B so that
gcdpβ1, γq “ gcdpβ2, γq “: d1. If d “ d1, then gcdpα, β1q “ gcdpγ, β1q ‰ gcdpα, γq. If d ‰ d1,
then either gcdpα, β1q “ gcdpα, β2q “ d and gcdpβ1, β2q ‰ d or gcdpγ, β1q “ gcdpγ, β2q “ d1 and
gcdpβ1, β2q ‰ d1.

Comment. The situation can be modelled as a complete graph on the infinite vertex set S, where
every edge ts, tu is colored by cps, tq :“ gcdps, tq. For every vertex the incident edges carry only finitely
many different colors, and by the problem statement at least two different colors show up on the edge
set. The goal is to show that there exists a bi-colored triangle (a triangle, whose edges carry exactly
two different colors).

For the proof, consider a vertex v whose incident edges carry at least two different colors. Let
X Ă S be an infinite subset so that cpv, xq ” c1 for all x P X. Let y P S be a vertex so that
cpv, yq ‰ c1. Let x1, x2 P X be two vertices with cpy, x1q “ cpy, x2q “ c2. If c1 “ c2, then the triangle
v, y, x1 is bi-colored. If c1 ‰ c2, then one of v, x1, x2 and y, x1, x2 is bi-colored.
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C2. Let n ě 3 be an integer. An integer m ě n` 1 is called n-colourful if, given infinitely
many marbles in each of n colours C1, C2, . . . , Cn, it is possible to place m of them around a
circle so that in any group of n ` 1 consecutive marbles there is at least one marble of colour
Ci for each i “ 1, . . . , n.

Prove that there are only finitely many positive integers which are not n-colourful. Find
the largest among them.

Answer: mmax “ n2 ´ n´ 1.

Solution. First suppose that there are npn ´ 1q ´ 1 marbles. Then for one of the colours, say
blue, there are at most n´ 2 marbles, which partition the non-blue marbles into at most n´ 2

groups with at least pn´ 1q2 ą npn´ 2q marbles in total. Thus one of these groups contains at
least n` 1 marbles and this group does not contain any blue marble.

Now suppose that the total number of marbles is at least npn´ 1q. Then we may write this
total number as nk ` j with some k ě n´ 1 and with 0 ď j ď n´ 1. We place around a circle
k ´ j copies of the colour sequence r1, 2, 3, . . . , ns followed by j copies of the colour sequence
r1, 1, 2, 3, . . . , ns.
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C3. A thimblerigger has 2021 thimbles numbered from 1 through 2021. The thimbles are
arranged in a circle in arbitrary order. The thimblerigger performs a sequence of 2021 moves;
in the kth move, he swaps the positions of the two thimbles adjacent to thimble k.

Prove that there exists a value of k such that, in the kth move, the thimblerigger swaps
some thimbles a and b such that a ă k ă b.

Solution. Assume the contrary. Say that the kth thimble is the central thimble of the kth move,
and its position on that move is the central position of the move.

Step 1: Black and white colouring.
Before the moves start, let us paint all thimbles in white. Then, after each move, we repaint

its central thimble in black. This way, at the end of the process all thimbles have become black.
By our assumption, in every move k, the two swapped thimbles have the same colour (as

their numbers are either both larger or both smaller than k). At every moment, assign the
colours of the thimbles to their current positions; then the only position which changes its
colour in a move is its central position. In particular, each position is central for exactly one
move (when it is being repainted to black).

Step 2: Red and green colouring.
Now we introduce a colouring of the positions. If in the kth move, the numbers of the two

swapped thimbles are both less than k, then we paint the central position of the move in red;
otherwise we paint that position in green. This way, each position has been painted in red or
green exactly once. We claim that among any two adjacent positions, one becomes green and
the other one becomes red; this will provide the desired contradiction since 2021 is odd.

Consider two adjacent positions A and B, which are central in the ath and in the bth moves,
respectively, with a ă b. Then in the ath move the thimble at position B is white, and therefore
has a number greater than a. After the ath move, position A is green and the thimble at
position A is black. By the arguments from Step 1, position A contains only black thimbles
after the ath step. Therefore, on the bth move, position A contains a black thimble whose
number is therefore less than b, while thimble b is at position B. So position B becomes red,
and hence A and B have different colours.

Comment 1. Essentially, Step 1 provides the proof of the following two assertions (under the indirect
assumption):

(1) Each position P becomes central in exactly one move (denote that move’s number by k); and

(2) Before the kth move, position P always contains a thimble whose number is larger than the number
of the current move, while after the kth move the position always contains a thimble whose number is
smaller than the number of the current move.

Both (1) and (2) can be proved without introduction of colours, yet the colours help to visualise
the argument.

After these two assertions have been proved, Step 2 can be performed in various ways, e.g., as
follows.

At any moment in the process, the black positions are split into several groups consisting of one or
more contiguous black positions each; different groups are separated by white positions. Now one can
prove by induction on k that, after the kth move, all groups have odd sizes. Indeed, in every move, the
new black position either forms a separate group, or merges two groups (say, of lengths a and b) into
a single group of length a` b` 1.

However, after the 2020th move the black positions should form one group of length 2020. This is
a contradiction.

This argument has several variations; e.g., one can check in a similar way that, after the process
starts, at least one among the groups of white positions has an even size.
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Comment 2. The solution above works equally well for any odd number of thimbles greater than 1,
instead of 2021. On the other hand, a similar statement with an even number n “ 2k ě 4 of thimbles is
wrong. To show that, the thimblerigger can enumerate positions from 1 through n clockwise, and then
put thimbles 1, 2, . . . , k at the odd positions, and thimbles k ` 1, k ` 2, . . . , 2k at the even positions.
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C4. The kingdom of Anisotropy consists of n cities. For every two cities there exists exactly
one direct one-way road between them. We say that a path from X to Y is a sequence of roads
such that one can move from X to Y along this sequence without returning to an already
visited city. A collection of paths is called diverse if no road belongs to two or more paths in
the collection.

Let A and B be two distinct cities in Anisotropy. Let NAB denote the maximal number of
paths in a diverse collection of paths from A to B. Similarly, let NBA denote the maximal num-
ber of paths in a diverse collection of paths from B to A. Prove that the equality NAB “ NBA

holds if and only if the number of roads going out from A is the same as the number of roads
going out from B.

Solution 1. We write X Ñ Y (or Y Ð X) if the road between X and Y goes from X

to Y . Notice that, if there is any route moving from X to Y (possibly passing through some
cities more than once), then there is a path from X to Y consisting of some roads in the route.
Indeed, any cycle in the route may be removed harmlessly; after some removals one obtains a
path.

Say that a path is short if it consists of one or two roads.
Partition all cities different from A and B into four groups, I, O, A, and B according to

the following rules: for each city C,

C P I ðñ AÑ C Ð B; C P O ðñ AÐ C Ñ B;

C P A ðñ AÑ C Ñ B; C P B ðñ AÐ C Ð B.

Lemma. Let P be a diverse collection consisting of p paths from A to B. Then there exists
a diverse collection consisting of at least p paths from A to B and containing all short paths
from A to B.
Proof. In order to obtain the desired collection, modify P as follows.

If there is a direct road A Ñ B and the path consisting of this single road is not in P,
merely add it to P.

Now consider any city C P A such that the path AÑ C Ñ B is not in P. If P contains at
most one path containing a road AÑ C or C Ñ B, remove that path (if it exists), and add the
path A Ñ C Ñ B to P instead. Otherwise, P contains two paths of the forms A Ñ C 99K B

and A 99K C Ñ B, where C 99K B and A 99K C are some paths. In this case, we recombine
the edges to form two new paths A Ñ C Ñ B and A 99K C 99K B (removing cycles from the
latter if needed). Now we replace the old two paths in P with the two new ones.

After any operation described above, the number of paths in the collection does not decrease,
and the collection remains diverse. Applying such operation to each C P A, we obtain the
desired collection. l

Back to the problem, assume, without loss of generality, that there is a road A Ñ B, and
let a and b denote the numbers of roads going out from A and B, respectively. Choose a diverse
collection P consisting of NAB paths from A to B. We will transform it into a diverse collection
Q consisting of at least NAB ` pb´ aq paths from B to A. This construction yields

NBA ě NAB ` pb´ aq; similarly, we get NAB ě NBA ` pa´ bq,
whence NBA ´NAB “ b´ a. This yields the desired equivalence.

Apply the lemma to get a diverse collection P 1 of at least NAB paths containing all |A| ` 1

short paths from A to B. Notice that the paths in P 1 contain no edge of a short path from B

to A. Each non-short path in P 1 has the form A Ñ C 99K D Ñ B, where C 99K D is
a path from some city C P I to some city D P O. For each such path, put into Q the
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path B Ñ C 99K D Ñ A; also put into Q all short paths from B to A. Clearly, the collection Q
is diverse.

Now, all roads going out from A end in the cities from I YAY tBu, while all roads going
out from B end in the cities from I Y B. Therefore,

a “ |I| ` |A| ` 1, b “ |I| ` |B|, and hence a´ b “ |A| ´ |B| ` 1.

On the other hand, since there are |A| ` 1 short paths from A to B (including AÑ B) and |B|
short paths from B to A, we infer

|Q| “ |P 1| ´ p|A| ` 1q ` |B| ě NAB ` pb´ aq,
as desired.

Solution 2. We recall some graph-theoretical notions. Let G be a finite graph, and let V be
the set of its vertices; fix two distinct vertices s, t P V . An ps, tq-cut is a partition of V into
two parts V “ S \ T such that s P S and t P T . The cut-edges in the cut pS, T q are the edges
going from S to T , and the size epS, T q of the cut is the number of cut-edges.

We will make use of the following theorem (which is a partial case of the Ford–Fulkerson
“min-cut max-flow” theorem).
Theorem (Menger). Let G be a directed graph, and let s and t be its distinct vertices. Then the
maximal number of edge-disjoint paths from s to t is equal to the minimal size of an ps, tq-cut.

Back to the problem. Consider a directed graph G whose vertices are the cities, and edges
correspond to the roads. Then NAB is the maximal number of edge-disjoint paths from A to B

in this graph; the number NBA is interpreted similarly.
As in the previous solution, denote by a and b the out-degrees of vertices A and B, respec-

tively. To solve the problem, we show that for any pA,Bq-cut pSA, TAq in our graph there exists
a pB,Aq-cut pSB, TBq satisfying

epSB, TBq “ epSA, TAq ` pb´ aq.
This yields

NBA ď NAB ` pb´ aq; similarly, we get NAB ď NBA ` pa´ bq,
whence again NBA ´NAB “ b´ a.

The construction is simple: we put SB “ SA Y tBu z tAu and hence TB “ TA Y tAu z tBu.
To show that it works, let A and B denote the sets of cut-edges in pSA, TAq and pSB, TBq,
respectively. Let as and at “ a´ as denote the numbers of edges going from A to SA and TA,
respectively. Similarly, denote by bs and bt “ b´ bs the numbers of edges going from B to SB

and TB, respectively.
Notice that any edge incident to none of A and B either belongs to both A and B, or belongs

to none of them. Denote the number of such edges belonging to A by c. The edges in A which
are not yet accounted for split into two categories: those going out from A to TA (including
AÑ B if it exists), and those going from SA z tAu to B — in other words, going from SB to B.
The numbers of edges in the two categories are at and |SB| ´ 1´ bs, respectively. Therefore,

|A| “ c` at ` p|SB| ´ bs ´ 1q. Similarly, we get |B| “ c` bt ` p|SA| ´ as ´ 1q,
and hence

|B| ´ |A| “ pbt ` bsq ´ pat ` asq “ b´ a,

since |SA| “ |SB|. This finishes the solution.
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C5. Let n and k be two integers with n ą k ě 1. There are 2n ` 1 students standing in
a circle. Each student S has 2k neighbours— namely, the k students closest to S on the right,
and the k students closest to S on the left.

Suppose that n ` 1 of the students are girls, and the other n are boys. Prove that there is
a girl with at least k girls among her neighbours.

Solution.We replace the girls by 1’s, and the boys by 0’s, getting the numbers a1, a2, . . . , a2n`1

arranged in a circle. We extend this sequence periodically by letting a2n`1`k “ ak for all k P Z.
We get an infinite periodic sequence

. . . , a1, a2, . . . , a2n`1, a1, a2, . . . , a2n`1, . . . .

Consider the numbers bi “ ai ` ai´k´1 ´ 1 P t´1, 0, 1u for all i P Z. We know that

bm`1 ` bm`2 ` ¨ ¨ ¨ ` bm`2n`1 “ 1 pm P Zq; p1q
in particular, this yields that there exists some i0 with bi0 “ 1. Now we want to find an index
i such that

bi “ 1 and bi`1 ` bi`2 ` ¨ ¨ ¨ ` bi`k ě 0. p2q
This will imply that ai “ 1 and

pai´k ` ai´k`1 ` ¨ ¨ ¨ ` ai´1q ` pai`1 ` ai`2 ` ¨ ¨ ¨ ` ai`kq ě k,

as desired.
Suppose, to the contrary, that for every index i with bi “ 1 the sum bi`1 ` bi`2 ` ¨ ¨ ¨ ` bi`k

is negative. We start from some index i0 with bi0 “ 1 and construct a sequence i0, i1, i2, . . . ,
where ij (j ą 0) is the smallest possible index such that ij ą ij´1 ` k and bij “ 1. We can
choose two numbers among i0, i1, . . . , i2n`1 which are congruent modulo 2n` 1 (without loss
of generality, we may assume that these numbers are i0 and iT ).

On the one hand, for every j with 0 ď j ď T ´ 1 we have

Sj :“ bij ` bij`1 ` bij`2 ` ¨ ¨ ¨ ` bij`1´1 ď bij ` bij`1 ` bij`2 ` ¨ ¨ ¨ ` bij`k ď 0

since bij`k`1, . . . , bij`1´1 ď 0. On the other hand, since piT ´ i0q | p2n` 1q, from p1q we deduce

S0 ` ¨ ¨ ¨ ` ST´1 “
iT´1ÿ
i“i0

bi “ iT ´ i0

2n` 1
ą 0.

This contradiction finishes the solution.

Comment 1. After the problem is reduced to finding an index i satisfying p2q, one can finish the
solution by applying the (existence part of) following statement.

Lemma (Raney). If 〈x1, x2, . . . , xm〉 is any sequence of integers whose sum is `1, exactly one of
the cyclic shifts 〈x1, x2, . . . , xm〉 , 〈x2, . . . , xm, x1〉 , . . . , 〈xm, x1, . . . , xm´1〉 has all of its partial sums
positive.

A (possibly wider known) version of this lemma, which also can be used in order to solve the
problem, is the following

Claim (Gas stations problem). Assume that there are several fuel stations located on a circular route
which together contain just enough gas to make one trip around. Then one can make it all the way
around, starting at the right station with an empty tank.
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Both Raney’s theorem and the Gas stations problem admit many different (parallel) proofs. Their
ideas can be disguised in direct solutions of the problem at hand (as it, in fact, happens in the above
solution); such solutions may avoid the introduction of the bi. Below, in Comment 2 we present a
variant of such solution, while in Comment 3 we present an alternative proof of Raney’s theorem.

Comment 2. Here is a version of the solution which avoids the use of the bi.

Suppose the contrary. Introduce the numbers ai as above. Starting from any index s0 with as0 “ 1,
we construct a sequence s0, s1, s2, . . . by letting si to be the smallest index larger than si´1`k such that
asi “ 1, for i “ 1, 2, . . . . Choose two indices among s1, . . . , s2n`1 which are congruent modulo 2n` 1;
we assume those two are s0 and sT , with sT ´ s0 “ tp2n` 1q. Notice here that sT`1 ´ sT “ s1 ´ s0.

For every i “ 0, 1, 2, . . . , T , put

Li “ si`1 ´ si and Si “ asi ` asi`1 ` ¨ ¨ ¨ ` asi`1´1.

Now, by the indirect assumption, for every i “ 1, 2, . . . , T , we have

asi´k ` asi´k`1 ` ¨ ¨ ¨ ` asi`k ď asi ` pk ´ 1q “ k.

Recall that aj “ 0 for all j with si ` k ă j ă asi`1
. Therefore,

Si´1 ` Si “
si`kÿ

j“si´1

aj “
si´k´1ÿ
j“si´1

aj `
si`kÿ

j“si´k

aj ď psi ´ si´1 ´ kq ` k “ Li´1.

Summing up these equalities over i “ 1, 2, . . . , T we get

2tpn` 1q “
Tÿ
i“1

pSi´1 ` Siq ď
Tÿ
i“1

Li´1 “ p2n ` 1qt,

which is a contradiction.

Comment 3. Here we present a proof of Raney’s lemma different from the one used above.

If we plot the partial sums sn “ x1 ` ¨ ¨ ¨ ` xn as a function of n, the graph of sn has an average
slope of 1{m, because sm`n “ sn ` 1.

The entire graph can be contained between two lines of slope 1{m. In general these bounding lines
touch the graph just once in each cycle of m points, since lines of slope 1{m hit points with integer
coordinates only once per m units. The unique (in one cycle) lower point of intersection is the only
place in the cycle from which all partial sums will be positive.

Comment 4. The following example shows that for different values of k the required girl may have
different positions: 0110 0110 1.
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C6. A hunter and an invisible rabbit play a game on an infinite square grid. First the
hunter fixes a colouring of the cells with finitely many colours. The rabbit then secretly chooses
a cell to start in. Every minute, the rabbit reports the colour of its current cell to the hunter,
and then secretly moves to an adjacent cell that it has not visited before (two cells are adjacent
if they share a side). The hunter wins if after some finite time either

• the rabbit cannot move; or

• the hunter can determine the cell in which the rabbit started.

Decide whether there exists a winning strategy for the hunter.

Answer: Yes, there exists a colouring that yields a winning strategy for the hunter.

Solution. A central idea is that several colourings C1, C2, . . . , Ck can be merged together into
a single product colouring C1 ˆ C2 ˆ ¨ ¨ ¨ ˆ Ck as follows: the colours in the product colouring
are ordered tuples pc1, . . . , cnq of colours, where ci is a colour used in Ci, so that each cell gets
a tuple consisting of its colours in the individual colourings Ci. This way, any information
which can be determined from one of the individual colourings can also be determined from
the product colouring.

Now let the hunter merge the following colourings:

• The first two colourings C1 and C2 allow the tracking of the horizontal and vertical
movements of the rabbit.

The colouring C1 colours the cells according to the residue of their x-coordinates modulo 3,
which allows to determine whether the rabbit moves left, moves right, or moves vertically.
Similarly, the colouring C2 uses the residues of the y-coordinates modulo 3, which allows
to determine whether the rabbit moves up, moves down, or moves horizontally.

• Under the condition that the rabbit’s x-coordinate is unbounded, colouring C3 allows to
determine the exact value of the x-coordinate:

In C3, the columns are coloured white and black so that the gaps between neighboring
black columns are pairwise distinct. As the rabbit’s x-coordinate is unbounded, it will
eventually visit two black cells in distinct columns. With the help of colouring C1 the
hunter can catch that moment, and determine the difference of x-coordinates of those two
black cells, hence deducing the precise column.

Symmetrically, under the condition that the rabbit’s y-coordinate is unbounded, there is
a colouring C4 that allows the hunter to determine the exact value of the y-coordinate.

• Finally, under the condition that the sum x` y of the rabbit’s coordinates is unbounded,
colouring C5 allows to determine the exact value of this sum: The diagonal lines x` y “
const are coloured black and white, so that the gaps between neighboring black diagonals
are pairwise distinct.

Unless the rabbit gets stuck, at least two of the three values x, y and x`y must be unbounded as
the rabbit keeps moving. Hence the hunter can eventually determine two of these three values;
thus he does know all three. Finally the hunter works backwards with help of the colourings
C1 and C2 and computes the starting cell of the rabbit.

Comment. There are some variations of the solution above: e.g., the colourings C3, C4 and C5 can
be replaced with different ones. However, such alternatives are more technically involved, and we do
not present them here.
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C7. Consider a checkered 3m ˆ 3m square, where m is an integer greater than 1. A frog
sits on the lower left corner cell S and wants to get to the upper right corner cell F . The frog
can hop from any cell to either the next cell to the right or the next cell upwards.

Some cells can be sticky, and the frog gets trapped once it hops on such a cell. A set X of
cells is called blocking if the frog cannot reach F from S when all the cells of X are sticky. A
blocking set is minimal if it does not contain a smaller blocking set.

(a) Prove that there exists a minimal blocking set containing at least 3m2 ´ 3m cells.

(b) Prove that every minimal blocking set contains at most 3m2 cells.

Note. An example of a minimal blocking set for m “ 2 is shown below. Cells of the set X are marked
by letters x.

S

F

x

x

x

x

xx

Solution for part (a). In the following example the square is divided into m stripes of size
3 ˆ 3m. It is easy to see that X is a minimal blocking set. The first and the last stripe each
contains 3m ´ 1 cells from the set X ; every other stripe contains 3m ´ 2 cells, see Figure 1.
The total number of cells in the set X is 3m2 ´ 2m` 2.
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Figure 1

Solution 1 for part (b). For a given blocking set X , say that a non-sticky cell is red if the
frog can reach it from S via some hops without entering set X . We call a non-sticky cell blue
if the frog can reach F from that cell via hops without entering set X . One can regard the
blue cells as those reachable from F by anti-hops, i.e. moves downwards and to the left. We
also colour all cells in X green. It follows from the definition of the blocking set that no cell
will be coloured twice. In Figure 2 we show a sample of a blocking set and the corresponding
colouring.

Now assume that X is a minimal blocking set. We denote by R (resp., B and G) be the
total number of red (resp., blue and green) cells.

We claim that G ď R ` 1 and G ď B ` 1. Indeed, there are at most 2R possible frog
hops from red cells. Every green or red cell (except for S) is accessible by such hops. Hence
2R ě G` pR´ 1q, or equivalently G ď R` 1. In order to prove the inequality G ď B ` 1, we
turn over the board and apply the similar arguments.

Therefore we get 9m2 ě B `R `G ě 3G´ 2, so G ď 3m2.
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Figure 2 (a) Figure 2 (b)

Solution 2 for part (b). We shall use the same colouring as in the above solution. Again,
assume that X is a minimal blocking set.

Note that any 2ˆ 2 square cannot contain more than 2 green cells. Indeed, on Figure 3(a)
the cell marked with “?” does not block any path, while on Figure 3(b) the cell marked with
“?” should be coloured red and blue simultaneously. So we can split all green cells into chains
consisting of three types of links shown on Figure 4 (diagonal link in the other direction is not
allowed, corresponding green cells must belong to different chains). For example, there are 3

chains in Figure 2(b).

?

(a)

?

(b)

Figure 3 Figure 4 Figure 5

We will inscribe green chains in disjoint axis-aligned rectangles so that the number of green
cells in each rectangle will not exceed 1{3 of the area of the rectangle. This will give us the
bound G ď 3m2. Sometimes the rectangle will be the minimal bounding rectangle of the chain,
sometimes minimal bounding rectangles will be expanded in one or two directions in order to
have sufficiently large area.

Note that for any two consecutive cells in the chain the colouring of some neighbouring
cells is uniquely defined (see Figure 5). In particular, this observation gives a corresponding
rectangle for the chains of height (or width) 1 (see Figure 6(a)). A separate green cell can
be inscribed in 1 ˆ 3 or 3 ˆ 1 rectangle with one red and one blue cell, see Figure 6(b)–(c),
otherwise we get one of impossible configurations shown in Figure 3.

(a) (b) (c)

?
?

(a) (b)

Figure 6 Figure 7

Any diagonal chain of length 2 is always inscribed in a 2 ˆ 3 or 3 ˆ 2 rectangle without
another green cells. Indeed, one of the squares marked with “?” in Figure 7(a) must be red. If
it is the bottom question mark, then the remaining cell in the corresponding 2 ˆ 3 rectangle
must have the same colour, see Figure 7(b).

A longer chain of height (or width) 2 always has a horizontal (resp., vertical) link and can be
inscribed into a 3ˆ a rectangle. In this case we expand the minimal bounding rectangle across
the long side which touches the mentioned link. On Figure 8(a) the corresponding expansion
of the minimal bounding rectangle is coloured in light blue. The upper right corner cell must
be also blue. Indeed it cannot be red or green. If it is not coloured in blue, see Figure 8(b),
then all anti-hop paths from F to “?” are blocked with green cells. And these green cells are
surrounded by blue ones, what is impossible. In this case the green chain contains a cells, which
is exactly 1{3 of the area of the rectangle.
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?

Figure 8 (a) Figure 8 (b)

In the remaining case the minimal bounding rectangle of the chain is of size a ˆ b where
a, b ě 3. Denote by ℓ the length of the chain (i.e. the number of cells in the chain).

If the chain has at least two diagonal links (see Figure 9), then ℓ ď a` b´ 3 ď ab{3.
If the chain has only one diagonal link then ℓ “ a`b´2. In this case the chain has horizontal

and vertical end-links, and we expand the minimal bounding rectangle in two directions to get
an pa`1qˆpb`1q rectangle. On Figure 10 a corresponding expansion of the minimal bounding
rectangle is coloured in light red. Again the length of the chain does not exceed 1{3 of the
rectangle’s area: ℓ ď a` b´ 2 ď pa` 1qpb` 1q{3.

On the next step we will use the following statement: all cells in constructed rectangles are
coloured red, green or blue (the cells upwards and to the right of green cells are blue; the cells
downwards and to the left of green cells are red). The proof repeats the same arguments as
before (see Figure 8(b).)

?

(a) (b)

Figure 9 Figure 10 Figure 11

Note that all constructed rectangles are disjoint. Indeed, assume that two rectangles have a
common cell. Using the above statement, one can see that the only such cell can be a common
corner cell, as shown in Figure 11. Moreover, in this case both rectangles should be expanded,
otherwise they would share a green corner cell.

If they were expanded along the same axis (see Figure 11(a)), then again the common corner
cannot be coloured correctly. If they were expanded along different axes (see Figure 11(b)) then
the two chains have a common point and must be connected in one chain. (These arguments
work for 2ˆ 3 and 1ˆ 3 rectangles in a similar manner.)

Comment 1. We do not a priori know whether all points are either red, or blue, or green. One might
colour the remaining cells in black. The arguments from Solution 2 allow to prove that black cells do
not exist. (One can start with a black cell which is nearest to S. Its left and downward neighbours
must be coloured green or blue. In all cases one gets a configuration similar to Figure 8(b).)

Comment 2. The maximal possible size of a minimal blocking set in 3m ˆ 3m rectangle seems to
be 3m2 ´ 2m` 2.

One can prove a more precise upper bound on the cardinality of the minimal blocking set: G ď
3m2 ´ m ` 2. Denote by DR the number of red branching cells (i.e. such cells which have 2 red
subsequent neighbours). And let DB be the number of similar blue cells. Then a double counting
argument allows to prove that G ď R´DR` 1 and G ď B´DB ` 1. Thus, we can bound G in terms
of DB and DR as

9m2 ě R`B `G ě 3G `DR `DB ´ 2.

Now one can estimate the number of branching cells in order to obtain that G ď 3m2 ´m` 2.
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Comment 3. An example with 3m2 ´ 2m` 2 green cells may look differently; see, e.g., Figure 12.

Figure 12
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C8. Determine the largest N for which there exists a table T of integers with N rows and
100 columns that has the following properties:

(i) Every row contains the numbers 1, 2, . . . , 100 in some order.

(ii) For any two distinct rows r and s, there is a column c such that |T pr, cq ´ T ps, cq| ě 2.

Here T pr, cq means the number at the intersection of the row r and the column c.

Answer: The largest such integer is N “ 100!{250.
Solution 1.

Non-existence of a larger table. Let us consider some fixed row in the table, and let
us replace (for k “ 1, 2, . . . , 50) each of two numbers 2k ´ 1 and 2k respectively by the symbol
xk. The resulting pattern is an arrangement of 50 symbols x1, x2, . . . , x50, where every symbol
occurs exactly twice. Note that there are N “ 100!{250 distinct patterns P1, . . . , PN .

If two rows r ‰ s in the table have the same pattern Pi, then |T pr, cq ´ T ps, cq| ď 1 holds
for all columns c. As this violates property (ii) in the problem statement, different rows have
different patterns. Hence there are at most N “ 100!{250 rows.

Existence of a table with N rows. We construct the table by translating every pattern
Pi into a corresponding row with the numbers 1, 2, . . . , 100. We present a procedure that in-
ductively replaces the symbols by numbers. The translation goes through steps k “ 1, 2, . . . , 50

in increasing order and at step k replaces the two occurrences of symbol xk by 2k ´ 1 and 2k.

• The left occurrence of x1 is replaced by 1, and its right occurrence is replaced by 2.

• For k ě 2, we already have the number 2k ´ 2 somewhere in the row, and now we are
looking for the places for 2k´1 and 2k. We make the three numbers 2k´2, 2k´1, 2k show
up (ordered from left to right) either in the order 2k´2, 2k´1, 2k, or as 2k, 2k´2, 2k´1,
or as 2k ´ 1, 2k, 2k ´ 2. This is possible, since the number 2k ´ 2 has been placed in
the preceding step, and shows up before / between / after the two occurrences of the
symbol xk.

We claim that the N rows that result from the N patterns yield a table with the desired
property (ii). Indeed, consider the r-th and the s-th row pr ‰ sq, which by construction result
from patterns Pr and Ps. Call a symbol xi aligned, if it occurs in the same two columns in
Pr and in Ps. Let k be the largest index, for which symbol xk is not aligned. Note that
k ě 2. Consider the column c1 with T pr, c1q “ 2k and the column c2 with T ps, c2q “ 2k. Then
T pr, c2q ď 2k and T ps, c1q ď 2k, as all symbols xi with i ě k ` 1 are aligned.

• If T pr, c2q ď 2k ´ 2, then |T pr, c2q ´ T ps, c2q| ě 2 as desired.

• If T ps, c1q ď 2k ´ 2, then |T pr, c1q ´ T ps, c1q| ě 2 as desired.

• If T pr, c2q “ 2k ´ 1 and T ps, c1q “ 2k ´ 1, then the symbol xk is aligned; contradiction.

In the only remaining case we have c1 “ c2, so that T pr, c1q “ T ps, c1q “ 2k holds. Now let
us consider the columns d1 and d2 with T pr, d1q “ 2k ´ 1 and T ps, d2q “ 2k ´ 1. Then d ‰ d2
(as the symbol xk is not aligned), and T pr, d2q ď 2k ´ 2 and T ps, d1q ď 2k ´ 2 (as all symbols
xi with i ě k ` 1 are aligned).

• If T pr, d2q ď 2k ´ 3, then |T pr, d2q ´ T ps, d2q| ě 2 as desired.

• If T ps, c1q ď 2k ´ 3, then |T pr, d1q ´ T ps, d1q| ě 2 as desired.

In the only remaining case we have T pr, d2q “ 2k ´ 2 and T ps, d1q “ 2k ´ 2. Now the row r

has the numbers 2k´2, 2k´1, 2k in the three columns d1, d2, c1. As one of these triples violates
the ordering property of 2k ´ 2, 2k ´ 1, 2k, we have the final contradiction. l
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Comment 1. We can identify rows of the table T with permutations of M :“ t1, . . . , 100u; also for
every set S ĂM each row induces a subpermutation of S obtained by ignoring all entries not from S.

The example from Solution 1 consists of all permutations for which all subpermutations of the 50
sets t1, 2u, t2, 3, 4u, t4, 5, 6u, . . . , t98, 99, 100u are even.
Solution 2. We provide a bit different proof why the example from Solution 1 (see also
Comment 1) works.
Lemma. Let π1 and π2 be two permutations of the set t1, 2, . . . , nu such that |π1piq´π2piq| ď 1

for every i. Then there exists a set of disjoint pairs pi, i` 1q such that π2 is obtained from π1

by swapping elements in each pair from the set.
Proof. We may assume that π1piq “ i for every i and proceed by induction on n. The case
n “ 1 is trivial. If π2pnq “ n, we simply apply the induction hypothesis. If π2pnq “ n ´ 1,
then π2piq “ n for some i ă n. It is clear that i “ n ´ 1, and we can also use the induction
hypothesis. l

Now let π1 and π2 be two rows (which we identify with permutations of t1, 2, . . . , 100u)
of the table constructed in Solution 1. Assume that |π1piq ´ π2piq| ď 1 for any i. From the
Lemma it follows that there exists a set S Ă t1, . . . , 99u such that any two numbers from
S differ by at least 2 and π2 is obtained from π1 by applying the permutations pj, j ` 1q,
j P S. Let r “ minpSq. If r “ 2k ´ 1 is odd, then π1 and π2 induce two subpermutations of
t2k ´ 2, 2k ´ 1, 2ku (or of t1, 2u for k “ 1) of opposite parities. Thus r “ 2k is even. Since
π1 and π2 induce subpermutations of the same (even) parity of t2k, 2k ` 1, 2k ` 2u, we must
have 2k ` 2 P S. Next, 2k ` 4 P S and so on, we get 98 P S, but then the parities of the
subpermutations of t98, 99, 100u in π1, π2 are opposite. A contradiction. l

Comment 2. In Solution 2 we only used that for each set from t1, 2u, t2, 3, 4u, t4, 5, 6u, . . . , t98, 99, 100u
any two rows of T induce a subpermutation of the same parity, not necessarily even.
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Geometry

G1. Let ABCD be a parallelogram such that AC “ BC. A point P is chosen on the
extension of the segment AB beyond B. The circumcircle of the triangle ACD meets the
segment PD again at Q, and the circumcircle of the triangle APQ meets the segment PC

again at R. Prove that the lines CD, AQ, and BR are concurrent.

Common remarks. The introductory steps presented here are used in all solutions below.
Since AC “ BC “ AD, we have =ABC “ =BAC “ =ACD “ =ADC. Since the

quadrilaterals APRQ and AQCD are cyclic, we obtain

=CRA “ 180˝ ´=ARP “ 180˝ ´=AQP “ =DQA “ =DCA “ =CBA,

so the points A, B, C, and R lie on some circle γ.

Solution 1. Introduce the point X “ AQ X CD; we need to prove that B, R and X are
collinear.

By means of the circle pAPRQq we have
=RQX “ 180˝ ´=AQR “ =RPA “ =RCX

(the last equality holds in view of AB ‖ CD), which means that the points C, Q, R, and X

also lie on some circle δ.
Using the circles δ and γ we finally obtain

=XRC “ =XQC “ 180˝ ´=CQA “ =ADC “ =BAC “ 180˝ ´=CRB,

that proves the desired collinearity.

A B
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γ
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Solution 2. Let α denote the circle pAPRQq. Since
=CAP “ =ACD “ =AQD “ 180˝ ´=AQP,

the line AC is tangent to α.
Now, let AD meet α again at a point Y (which necessarily lies on the extension of DA

beyond A). Using the circle γ, along with the fact that AC is tangent to α, we have

=ARY “ =CAD “ =ACB “ =ARB,

so the points Y , B, and R are collinear.
Applying Pascal’s theorem to the hexagon AAY RPQ (where AA is regarded as the tangent

to α at A), we see that the points AAXRP “ C, AY XPQ “ D, and Y RXQA are collinear.
Hence the lines CD, AQ, and BR are concurrent.
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Comment 1. Solution 2 consists of two parts: (1) showing that BR and DA meet on α; and (2)
showing that this yields the desired concurrency. Solution 3 also splits into those parts, but the proofs
are different.

A B
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Solution 3. As in Solution 1, we introduce the point X “ AQXCD and aim at proving that
the points B, R, and X are collinear. As in Solution 2, we denote α “ pAPQRq; but now we
define Y to be the second meeting point of RB with α.

Using the circle α and noticing that CD is tangent to γ, we obtain

=RY A “ =RPA “ =RCX “ =RBC. (1)

So AY ‖ BC, and hence Y lies on DA.
Now the chain of equalities (1) shows also that =RY D “ =RCX , which implies that the

points C, D, Y , and R lie on some circle β. Hence, the lines CD, AQ, and Y BR are the
pairwise radical axes of the circles pAQCDq, α, and β, so those lines are concurrent.

Comment 2. The original problem submission contained an additional assumption that BP “ AB.
The Problem Selection Committee removed this assumption as superfluous.
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G2. Let ABCD be a convex quadrilateral circumscribed around a circle with centre I.
Let ω be the circumcircle of the triangle ACI. The extensions of BA and BC beyond A and
C meet ω at X and Z, respectively. The extensions of AD and CD beyond D meet ω at Y
and T , respectively. Prove that the perimeters of the (possibly self-intersecting) quadrilaterals
ADTX and CDY Z are equal.

Solution. The point I is the intersection of the external bisector of the angle TCZ with the
circumcircle ω of the triangle TCZ, so I is the midpoint of the arc TCZ and IT “ IZ.
Similarly, I is the midpoint of the arc Y AX and IX “ IY . Let O be the centre of ω. Then X

and T are the reflections of Y and Z in IO, respectively. So XT “ Y Z.
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Let the incircle of ABCD touch AB, BC, CD, and DA at points P , Q, R, and S, respec-
tively.

The right triangles IXP and IY S are congruent, since IP “ IS and IX “ IY . Similarly,
the right triangles IRT and IQZ are congruent. Therefore, XP “ Y S and RT “ QZ.

Denote the perimeters of ADTX and CDY Z by PADTX and PCDY Z respectively. Since
AS “ AP , CQ “ RC, and SD “ DR, we obtain

PADTX “ XT `XA` AS ` SD `DT “ XT `XP `RT

“ Y Z ` Y S `QZ “ Y Z ` Y D `DR`RC ` CZ “ PCDY Z ,

as required.

Comment 1. After proving that X and T are the reflections of Y and Z in IO, respectively, one can
finish the solution as follows. Since XT “ Y Z, the problem statement is equivalent to

XA`AD `DT “ Y D `DC ` CZ. p1q
Since ABCD is circumscribed, AB ´AD “ BC ´ CD. Adding this to (1), we come to an equivalent
equality XA`AB `DT “ Y D `BC ` CZ, or

XB `DT “ Y D `BZ. p2q
Let λ “ XZ

AC
“ TY

AC
. Since XACZ is cyclic, the triangles ZBX and ABC are similar, hence

XB

BC
“ BZ

AB
“ XZ

AC
“ λ.
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It follows that XB “ λBC and BZ “ λAB. Likewise, the triangles TDY and ADC are similar, hence

DT

AD
“ DY

CD
“ TY

AC
“ λ.

Therefore, (2) rewrites as λBC ` λAD “ λCD ` λAB.
This is equivalent to BC `AD “ CD `AB which is true as ABCD is circumscribed.

Comment 2. Here is a more difficult modification of the original problem, found by the PSC.

Let ABCD be a convex quadrilateral circumscribed around a circle with centre I. Let ω be the
circumcircle of the triangle ACI. The extensions of BA and BC beyond A and C meet ω at X and
Z, respectively. The extensions of AD and CD beyond D meet ω at Y and T , respectively. Let
U “ BC XAD and V “ BAX CD. Let IU be the incentre of UY Z and let JV be the V -excentre of
V XT . Then IUJV K BD.
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G3.
Version 1. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set consisting of n2 quadrilaterals such that all their
vertices lie in S, and each point in S is a vertex of exactly one of the quadrilaterals in F .

Determine the largest possible sum of areas of all n2 quadrilaterals in F .
Version 2. Let n be a fixed positive integer, and let S be the set of points px, yq on the
Cartesian plane such that both coordinates x and y are nonnegative integers smaller than 2n

(thus |S| “ 4n2). Assume that F is a set of polygons such that all vertices of polygons in F lie
in S, and each point in S is a vertex of exactly one of the polygons in F .

Determine the largest possible sum of areas of all polygons in F .

Answer for both Versions: The largest possible sum of areas is Σpnq :“ 1

3
n2p2n`1qp2n´1q.

Common remarks. Throughout all solutions, the area of a polygon P will be denoted by rP s.
We say that a polygon is legal if all its vertices belong to S. Let O “ `

n´ 1

2
, n´ 1

2

˘
be the

centre of S. We say that a legal square is central if its centre is situated at O. Finally, say that
a set F of polygons is acceptable if it satisfies the problem requirements, i.e. if all polygons
in F are legal, and each point in S is a vertex of exactly one polygon in F . For an acceptable
set F , we denote by ΣpFq the sum of areas of polygons in F .

Solution 1, for both Versions. Each point in S is a vertex of a unique central square. Thus
the set G of central squares is acceptable. We will show that

ΣpFq ď ΣpGq “ Σpnq, (1)

thus establishing the answer.
We will use the following key lemma.

Lemma 1. Let P “ A1A2 . . . Am be a polygon, and let O be an arbitrary point in the plane.
Then

rP s ď 1

2

mÿ
i“1

OA2

i ; (2)

moreover, if P is a square centred at O, then the inequality (2) turns into an equality.
Proof. Put An`1 “ A1. For each i “ 1, 2, . . . , m, we have

rOAiAi`1s ď OAi ¨ OAi`1

2
ď OA2

i `OA2

i`1

4
.

Therefore,

rP s ď
mÿ
i“1

rOAiAi`1s ď 1

4

mÿ
i“1

pOA2

i `OA2

i`1
q “ 1

2

mÿ
i“1

OA2

i ,

which proves (2). Finally, all the above inequalities turn into equalities when P is a square
centred at O. l

Back to the problem, consider an arbitrary acceptable set F . Applying Lemma 1 to each
element in F and to each element in G (achieving equality in the latter case), we obtain

ΣpFq ď 1

2

ÿ
APS

OA2 “ ΣpGq,

which establishes the left inequality in (1).
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It remains to compute ΣpGq. We have

ΣpGq “ 1

2

ÿ
APS

OA2 “ 1

2

2n´1ÿ
i“0

2n´1ÿ
j“0

˜ˆ
n´ 1

2
´ i

˙2

`
ˆ
n´ 1

2
´ j

˙2
¸

“ 1

8
¨ 4 ¨ 2n

n´1ÿ
i“0

p2n´ 2i´ 1q2 “ n

n´1ÿ
j“0

p2j ` 1q2 “ n

˜
2nÿ
j“1

j2 ´
nÿ

j“1

p2jq2
¸

“ n

ˆ
2np2n` 1qp4n` 1q

6
´ 4 ¨ npn` 1qp2n` 1q

6

˙
“ n2p2n` 1qp2n´ 1q

3
“ Σpnq.

Comment. There are several variations of the above solution, also working for both versions of the
problem. E.g., one may implement only the inequality rOAiAi`1s ď 1

2
OAi ¨OAi`1 to obtain

ΣpFq ď 1

2

4n2ÿ
i“1

OKi ¨OLi,

where both pKiq and pLiq are permutations of all points in S. The right hand side can then be bounded
from above by means of the rearrangement inequality; the bound is also achieved on the collection G.

However, Version 2 seems to be more difficult than Version 1. First of all, the optimal model for
this version is much less easy to guess, until one finds an idea for proving the upper bound. Moreover,
Version 1 allows different solutions which do not seem to be generalized easily — such as Solution 2
below.

Solution 2, for Version 1. Let F be an accessible set of quadrilaterals. For every quadri-
lateral ABCD in F write

rABCDs “ AC ¨BD

2
sin φ ď AC2 `BD2

4
, (3)

where φ is the angle between AC and BD. Applying this estimate to all members in F we
obtain

ΣpFq ď 1

4

2n2ÿ
i“1

AiB
2

i ,

where A1, A2, . . . , A2n2, B1, B2, . . . , B2n2 is some permutation of S. For brevity, denote

f
`pAiq, pBiq

˘
:“

2n2ÿ
i“1

AiB
2

i .

The rest of the solution is based on the following lemma.

Lemma 2. The maximal value of f
`pAiq, pBiq

˘
over all permutations of S equals 4

3
n2p4n2 ´ 1q

and is achieved when Ai is symmetric to Bi with respect to O, for every i “ 1, 2, . . . , 2n2.

Proof. Let Ai “ ppi, qiq and Bi “ pri, siq, for i “ 1, 2, . . . , 2n2. We have

f
`pAiq, pBiq

˘ “ 2n2ÿ
i“1

ppi ´ riq2 `
2n2ÿ
i“1

pqi ´ siq2;



48 Saint-Petersburg — Russia, 16th–24th July 2021

it suffices to bound the first sum, the second is bounded similarly. This can be done, e.g., by
means of the QM–AM inequality as follows:

2n2ÿ
i“1

ppi ´ riq2 “
2n2ÿ
i“1

`
2p2i ` 2r2i ´ ppi ` riq2

˘ “ 4n

2n´1ÿ
j“0

j2 ´
2n2ÿ
i“1

ppi ` riq2

ď 4n

2n´1ÿ
j“0

j2 ´ 1

2n2

˜
2n2ÿ
i“1

ppi ` riq
¸2

“ 4n

2n´1ÿ
j“0

j2 ´ 1

2n2

˜
2n ¨

2n´1ÿ
j“0

j

¸2

“ 4n ¨ 2np2n´ 1qp4n´ 1q
6

´ 2n2p2n´ 1q2 “ 2n2p2n´ 1qp2n` 1q
3

.

All the estimates are sharp if pi ` ri “ 2n´ 1 for all i. Thus,

f
`pAiq, pBiq

˘ ď 4n2p4n2 ´ 1q
3

,

and the estimate is sharp when pi ` ri “ qi ` si “ 2n ´ 1 for all i, i.e. when Ai and Bi are
symmetric with respect to O. l

Lemma 2 yields

ΣpFq ď 1

4
¨ 4n

2p4n2 ´ 1q
3

“ n2p2n´ 1qp2n` 1q
3

.

Finally, all estimates are achieved simultaneously on the set G of central squares.

Comment 2. Lemma 2 also allows different proofs. E.g., one may optimize the sum
ř

i piri step
by step: if pi ă pj and ri ă rj , then a swap ri Ø rj increases the sum. By applying a proper chain
of such replacements (possibly swapping elements in some pairs ppi, riq), one eventually comes to a
permutation where pi ` ri “ 2n´ 1 for all i.

Comment 3. Version 2 can also be considered for a square grid with odd number n of points on each
side. If we allow a polygon consisting of one point, then Solution 1 is applied verbatim, providing an
answer 1

12
n2pn2 ´ 1q. If such polygons are not allowed, then one needs to subtract 1

2
from the answer.
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G4. Let ABCD be a quadrilateral inscribed in a circle Ω. Let the tangent to Ω at D

intersect the rays BA and BC at points E and F , respectively. A point T is chosen inside the
triangle ABC so that TE ‖ CD and TF ‖ AD. Let K ‰ D be a point on the segment DF

such that TD “ TK. Prove that the lines AC, DT and BK intersect at one point.

Solution 1. Let the segments TE and TF cross AC at P and Q, respectively. Since PE ‖ CD

and ED is tangent to the circumcircle of ABCD, we have

=EPA “ =DCA “ =EDA,

and so the points A, P , D, and E lie on some circle α. Similarly, the points C, Q, D, and F

lie on some circle γ.
We now want to prove that the line DT is tangent to both α and γ at D. Indeed, since

=FCD ` =EAD “ 180˝, the circles α and γ are tangent to each other at D. To prove that
T lies on their common tangent line at D (i.e., on their radical axis), it suffices to check that
TP ¨ TE “ TQ ¨ TF , or that the quadrilateral PEFQ is cyclic. This fact follows from

=QFE “ =ADE “ =APE.

Since TD “ TK, we have =TKD “ =TDK. Next, as TD and DE are tangent to α and Ω,
respectively, we obtain

=TKD “ =TDK “ =EAD “ =BDE,

which implies TK ‖ BD.
Next we prove that the five points T , P , Q, D, and K lie on some circle τ . Indeed, since

TD is tangent to the circle α we have

=EPD “ =TDF “ =TKD,

which means that the point P lies on the circle pTDKq. Similarly, we have Q P pTDKq.
Finally, we prove that PK ‖ BC. Indeed, using the circles τ and γ we conclude that

=PKD “ =PQD “ =DFC,

which means that PK ‖ BC.
Triangles TPK and DCB have pairwise parallel sides, which implies the fact that TD, PC

and KB are concurrent, as desired.
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Comment 1. There are several variations of the above solution.
E.g., after finding circles α and γ, one can notice that there exists a homothety h mapping the

triangle TPQ to the triangle DCA; the centre of that homothety is Y “ AC X TD. Since

=DPE “ =DAE “ =DCB “ =DQT,

the quadrilateral TPDQ is inscribed in some circle τ . We have hpτq “ Ω, so the point D˚ “ hpDq lies
on Ω.

Finally, by
=DCD˚ “ =TPD “ =BAD,

the points B and D˚ are symmetric with respect to the diameter of Ω passing through D. This yields
DB “ DD˚ and BD˚ ‖ EF , so hpKq “ B, and BK passes through Y .

Solution 2. Consider the spiral similarity φ centred at D which maps B to F . Recall that
for any two points X and Y , the triangles DXφpXq and DY φpY q are similar.

Define T 1 “ φpEq. Then
=CDF “ =FBD “ =φpBqBD “ =φpEqED “ =T 1ED,

so CD ‖ T 1E. Using the fact that DE is tangent to pABDq and then applying φ we infer

=ADE “ =ABD “ =T 1FD,

so AD ‖ T 1F ; hence T 1 coincides with T . Therefore,

=BDE “ =FDT “ =DKT,

whence TK ‖ BD.
Let BK X TD “ X , AC X TD “ Y , and AC X TF “ Q. Notice that TK ‖ BD implies

TX

XD
“ TK

BD
“ TD

BD
.

So we wish to prove that TY
Y D

is equal to the same ratio.
We first show that φpAq “ Q. Indeed,

=DAφpAq “ =DBF “ =DAC,

and so φpAq P AC. Together with φpAq P φpEBq “ TF this yields φpAq “ Q. It follows that

TQ

AE
“ TD

ED
.
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Now, since TF ‖ AD and △EAD „ △EDB, we have

TY

Y D
“ TQ

AD
“ TQ

AE
¨ AE
AD

“ TD

ED
¨ ED

BD
“ TD

BD
,

which completes the proof.

Comment 2. The point D is the Miquel point for any 4 of the 5 lines BA, BC, TE, TF and AC.
Essentially, this is proved in both solutions by different methods.
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G5. Let ABCD be a cyclic quadrilateral whose sides have pairwise different lengths. Let
O be the circumcentre of ABCD. The internal angle bisectors of =ABC and =ADC meet AC
at B1 and D1, respectively. Let OB be the centre of the circle which passes through B and is
tangent to AC at D1. Similarly, let OD be the centre of the circle which passes through D and
is tangent to AC at B1.

Assume that BD1 ‖ DB1. Prove that O lies on the line OBOD.

Common remarks. We introduce some objects and establish some preliminary facts common
for all solutions below.

Let Ω denote the circle pABCDq, and let γB and γD denote the two circles from the problem
statement (their centres are OB and OD, respectively). Clearly, all three centres O, OB, and OD

are distinct.

A

B

C

D

B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1B1

D1 HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

Assume, without loss of generality, that AB ą BC. Suppose
that AD ą DC, and let H “ AC X BD. Then the rays BB1

and DD1 lie on one side of BD, as they contain the midpoints of
the arcs ADC and ABC, respectively. However, if BD1 ‖ DB1,
then B1 and D1 should be separated by H . This contradiction
shows that AD ă CD.

Let γB and γD meet Ω again at TB and TD, respectively. The
common chord BTB of Ω and γB is perpendicular to their line of
centres OBO; likewise, DTD K ODO. Therefore, O P OBOD ðñ OBO ‖ ODO ðñ BTB ‖
DTD, and the problem reduces to showing that

BTB ‖ DTD. (1)

Comment 1. It seems that the discussion of the positions of points is necessary for both Solutions
below. However, this part automatically follows from the angle chasing in Comment 2.

Solution 1. Let the diagonals AC and BD cross at H . Consider the homothety h centred
at H and mapping B to D. Since BD1 ‖ DB1, we have hpD1q “ B1.

Let the tangents to Ω at B and D meet AC at LB and LD, respectively. We have

=LBBB1 “ =LBBC `=CBB1 “ =BALB `=B1BA “ =BB1LB,

which means that the triangle LBBB1 is isosceles, LBB “ LBB1. The powers of LB with
respect to Ω and γD are LBB

2 and LBB
2

1
, respectively; so they are equal, whence LB lies on

the radical axis TDD of those two circles. Similarly, LD lies on the radical axis TBB of Ω
and γB.

By the sine rule in the triangle BHLB, we obtain
HLB

sin=HBLB

“ BLB

sin=BHLB

“ B1LB

sin=BHLB

; (2)

similarly,
HLD

sin=HDLD

“ DLD

sin=DHLD

“ D1LD

sin=DHLD

. (3)

Clearly, =BHLB “ =DHLD. In the circle Ω, tangent lines BLB and DLD form equal angles
with the chord BD, so sin=HBLB “ sin=HDLD (this equality does not depend on the
picture). Thus, dividing (2) by (3) we get

HLB

HLD

“ B1LB

D1LD

, and hence
HLB

HLD

“ HLB ´B1LB

HLD ´D1LD

“ HB1

HD1

.

Since hpD1q “ B1, the obtained relation yields hpLDq “ LB, so h maps the line LDB to LBD,
and these lines are parallel, as desired.
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OD

LB

LD

γB

γD

Ω

Comment 2. In the solution above, the key relation hpLDq “ LB was obtained via a short compu-
tation in sines. Here we present an alternative, pure synthetical way of establishing that.

Let the external bisectors of =ABC and =ADC cross AC at B2 and D2, respectively; assume thatŊAB ą ŊCB. In the right-angled triangle BB1B2, the point LB is a point on the hypothenuse such that
LBB1 “ LBB, so LB is the midpoint of B1B2.

Since DD1 is the internal angle bisector of =ADC, we have

=BDD1 “ =BDA´=CDB

2
“ =BCA´=CAB

2
“ =BB2D1,

so the points B, B2, D, and D1 lie on some circle ωB. Similarly, LD is the midpoint of D1D2, and the
points D, D2, B, and B1 lie on some circle ωD.

Now we have

=B2DB1 “ =B2DB ´=B1DB “ =B2D1B ´=B1D2B “ =D2BD1.

Therefore, the corresponding sides of the triangles DB1B2 and BD1D2 are parallel, and the triangles
are homothetical (in H). So their corresponding medians DLB and BLD are also parallel.

A

B

C

D

HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH B1

D1

B2

D2

LB

LD

Ω

ωB

ωD

Yet alternatively, after obtaining the circles ωB and ωD, one may notice that H lies on their radical
axis BD, whence HB1 ¨HD2 “ HD1 ¨HB2, or

HB1

HD1

“ HB2

HD1

.

Since hpD1q “ B1, this yields hpD2q “ B2 and hence hpLDq “ LB .
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Comment 3. Since h preserves the line AC and maps B ÞÑ D and D1 ÞÑ B1, we have hpγBq “ γD.
Therefore, hpOBq “ OD; in particular, H also lies on OBOD.

Solution 2. Let BD1 and TBD1 meet Ω again at XB and YB, respectively. Then

=BD1C “ =BTBD1 “ =BTBYB “ =BXBYB,

which shows that XBYB ‖ AC. Similarly, let DB1 and TDB1 meet Ω again at XD and YD,
respectively; then XDYD ‖ AC.

Let MD and MB be the midpoints of the arcs ABC and ADC, respectively; then the
points D1 and B1 lie on DMD and BMB, respectively. Let K be the midpoint of AC (which
lies on MBMD). Applying Pascal’s theorem to MDDXDXBBMB, we obtain that the points
D1 “MDDXXBB, B1 “ DXD XBMB, and XDXB XMBMD are collinear, which means that
XBXD passes throughK. Due to symmetry, the diagonals of an isosceles trapezoidXBYBXDYD

cross at K.

A

B

C

D

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

B1
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TB

TD

XB

XD

YB

YD

MD

MB

γB

γD

Ω

Let b and d denote the distances from the lines XBYB and XDYD, respectively, to AC. Then
we get

XBYB

XDYD

“ b

d
“ D1XB

B1XD

,

where the second equation holds in view of D1XB ‖ B1XD. Therefore, the triangles D1XBYB

and B1XDYD are similar. The triangles D1TBB and B1TDD are similar to them and hence to
each other. Since BD1 ‖ DB1, these triangles are also homothetical. This yields BTB ‖ DTD,
as desired.

Comment 4. The original problem proposal asked to prove that the relations BD1 ‖ DB1 and
O P O1O2 are equivalent. After obtaining BD1 ‖ DB1 ñ O P O1O2, the converse proof is either
repeated backwards mutatis mutandis, or can be obtained by the usual procedure of varying some
points in the construction.

The Problem Selection Committee chose the current version, because it is less technical, yet keeps
most of the ideas.
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G6. Determine all integers n ě 3 satisfying the following property: every convex n-gon
whose sides all have length 1 contains an equilateral triangle of side length 1.

(Every polygon is assumed to contain its boundary.)

Answer: All odd n ě 3.

Solution. First we show that for every even n ě 4 there exists a polygon violating the required
statement. Consider a regular k-gon A0A1, . . .Ak´1 with side length 1. Let B1, B2, . . . , Bn{2´1

be the points symmetric to A1, A2, . . . , An{2´1 with respect to the line A0An{2. Then P “
A0A1A2 . . . An{2´1An{2Bn{2´1Bn{2´2 . . . B2B1 is a convex n-gon whose sides all have length 1.
If k is big enough, P is contained in a strip of width 1{2, which clearly does not contain any
equilateral triangle of side length 1.

A0

A1
A2 An/2−1

An/2

Bn/2−1B2
B1

Assume now that n “ 2k`1. As the case k “ 1 is trivially true, we assume k ě 2 henceforth.
Consider a convex p2k ` 1q-gon P whose sides all have length 1. Let d be its longest diagonal.
The endpoints of d split the perimeter of P into two polylines, one of which has length at least
k ` 1. Hence we can label the vertices of P so that P “ A0A1 . . . A2k and d “ A0Aℓ with
ℓ ě k ` 1. We will show that, in fact, the polygon A0A1 . . . Aℓ contains an equilateral triangle
of side length 1.

Suppose that =AℓA0A1 ě 60˝. Since d is the longest diagonal, we have A1Aℓ ď A0Aℓ,
so =A0A1Aℓ ě =AℓA0A1 ě 60˝. It follows that there exists a point X inside the triangle
A0A1Aℓ such that the triangle A0A1X is equilateral, and this triangle is contained in P . Similar
arguments apply if =Aℓ´1AℓA0 ě 60˝.

A0

A1
A2

Aℓ−1

Aℓ
X

From now on, assume =AℓA0A1 ă 60˝ and Aℓ´1AℓA0 ă 60˝.
Consider an isosceles trapezoid A0Y ZAℓ such that A0Aℓ ‖ Y Z, A0Y “ ZAℓ “ 1, and

=AℓA0Y “ =ZAℓA0 “ 60˝. Suppose that A0A1 . . . Aℓ is contained in A0Y ZAℓ. Note that the
perimeter of A0A1 . . . Aℓ equals ℓ` A0Aℓ and the perimeter of A0Y ZAℓ equals 2A0Aℓ ` 1.

Y Z

A0

A1 A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2A2

AmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAmAm Aℓ−1

Aℓ

Recall a well-known fact stating that if a convex polygon P1 is contained in a convex
polygon P2, then the perimeter of P1 is at most the perimeter of P2. Hence we obtain

ℓ` A0Aℓ ď 2A0Aℓ ` 1, i.e. ℓ´ 1 ď A0Aℓ.

On the other hand, the triangle inequality yields

A0Aℓ ă AℓAℓ`1 ` Aℓ`1Aℓ`2 ` . . .` A2kA0 “ 2k ` 1´ ℓ ď ℓ´ 1,

which gives a contradiction.
Therefore, there exists a vertex Am of A0A1 . . . Aℓ which lies outside A0Y ZAℓ. Since

=AℓA0A1 ă 60˝ “ =AℓA0Y and Aℓ´1AℓA0 ă 60˝ “ =ZAℓA0, p1q
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the distance between Am and A0Aℓ is at least
?
3{2.

Let P be the projection of Am to A0Aℓ. Then PAm ě ?
3{2, and by (1) we have A0P ą 1{2

and PAℓ ą 1{2. Choose points Q P A0P , R P PAℓ, and S P PAm such that PQ “ PR “ 1{2
and PS “ ?

3{2. Then QRS is an equilateral triangle of side length 1 contained in A0A1 . . . Aℓ.

A0

A1

A2

Am

Aℓ
Q P R

SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS
Y Z

Comment. In fact, for every odd n a stronger statement holds, which is formulated in terms defined
in the solution above: there exists an equilateral triangle AiAi`1B contained in A0A1 . . . Aℓ for some
0 ď i ă ℓ. We sketch an indirect proof below.

As above, we get =AℓA0A1 ă 60˝ and Aℓ´1AℓA0 ă 60˝. Choose an index m P r1, ℓ´1s maximising
the distance between Am and A0Aℓ. Arguments from the above solution yield 1 ă m ă ℓ´ 1. Then
=A0Am´1Am ą 120˝ and =Am´1AmAℓ ą =A0AmAℓ ě 60˝. We construct an equilateral triangle
Am´1AmB as in the figure below. If B lies in A0Am´1AmAℓ, then we are done. Otherwise B and Am

lie on different sides of A0Aℓ. As before, let P be the projection of Am to A0Aℓ. We will show that

A0A1 `A1A2 ` . . . `Am´1Am ă A0P ` 1{2. p2q

A0

Am−1

Am Am+1

Aℓ
B

C

K

P

There exists a point C on the segment A0P such that =Am´1CP “ 60˝. Construct a parallelogram
A0CAm´1K. Then the polyline A0A1 . . . Am´1 is contained in the triangle Am´1KA0, so

A0A1 `A1A2 ` . . . `Am´2Am´1 `Am´1Am ď A0K `KAm´1 `Am´1Am “ A0C ` CAm´1 ` 1.

To prove (2), it suffices to show that CAm´1 ă CP ´ 1{2. Let the line through B parallel to CP

intersect the rays Am´1C and AmP at D and T , respectively. It is easy to see that the desired
inequality will follow from DAm´1 ď DT ´ 1{2.

Two possible arrangements of points are shown in the figures below.
Observe that =DAm´1B ě 60˝, so there is a point M on the segment DB such that the triangle

DMAm´1 is equilateral. Then =Am´1MD “ 60˝ “ =Am´1AmB, so Am´1MBAm is a cyclic quadri-
lateral. Therefore, =AmMB “ 60˝. Thus, T lies on the ray MB and we have to show that MT ě 1{2.
Indeed, MT “ AmM{2 and AmM ě AmB “ 1. This completes the proof of the inequality (2).
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Similarly, either there exists an equilateral triangle AmAm`1B
1 contained in A0A1 . . . Aℓ, or

AmAm`1 `Am`1Am`2 ` . . .`Aℓ´1Aℓ ă AℓP ` 1{2. p3q
Adding (2) and (3) yields A0A1 `A1A2 ` . . .`Aℓ´1Aℓ ă A0Aℓ ` 1, which gives a contradiction.
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G7. A point D is chosen inside an acute-angled triangle ABC with AB ą AC so that
=BAD “ =DAC. A point E is constructed on the segment AC so that =ADE “ =DCB.
Similarly, a point F is constructed on the segment AB so that =ADF “ =DBC. A point
X is chosen on the line AC so that CX “ BX . Let O1 and O2 be the circumcentres of the
triangles ADC and DXE. Prove that the lines BC, EF , and O1O2 are concurrent.

Common remarks. Let Q be the isogonal conjugate of D with respect to the triangle ABC.
Since =BAD “ =DAC, the point Q lies on AD. Then =QBA “ =DBC “ =FDA, so the
points Q, D, F , and B are concyclic. Analogously, the points Q, D, E, and C are concyclic.
Thus AF ¨ AB “ AD ¨ AQ “ AE ¨ AC and so the points B, F , E, and C are also concyclic.

A

B C
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E
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Let T be the intersection of BC and FE.
Claim. TD2 “ TB ¨ TC “ TF ¨ TE.
Proof. We will prove that the circles pDEF q and pBDCq are tangent to each other. Indeed,
using the above arguments, we get

=BDF “ =AFD ´=ABD “ p180˝ ´=FAD ´=FDAq ´ p=ABC ´=DBCq
“ 180˝´=FAD´=ABC “ 180˝´=DAE´=FEA “ =FED`=ADE “ =FED`=DCB,

which implies the desired tangency.
Since the points B, C, E, and F are concyclic, the powers of the point T with respect to the

circles pBDCq and pEDF q are equal. So their radical axis, which coincides with the common
tangent at D, passes through T , and hence TD2 “ TE ¨ TF “ TB ¨ TC. l

Solution 1. Let TA intersect the circle pABCq again at M . Due to the circles pBCEF q
and pAMCBq, and using the above Claim, we get TM ¨ TA “ TF ¨ TE “ TB ¨ TC “ TD2; in
particular, the points A, M , E, and F are concyclic.

Under the inversion with centre T and radius TD, the point M maps to A, and B maps to
C, which implies that the circle pMBDq maps to the circle pADCq. Their common point D
lies on the circle of the inversion, so the second intersection point K also lies on that circle,
which means TK “ TD. It follows that the point T and the centres of the circles pKDEq
and pADCq lie on the perpendicular bisector of KD.

Since the center of pADCq is O1, it suffices to show now that the points D, K, E, and X

are concyclic (the center of the corresponding circle will be O2).
The lines BM , DK, and AC are the pairwise radical axes of the circles pABCMq, pACDKq

and pBMDKq, so they are concurrent at some point P . Also, M lies on the circle pAEF q, thus
?pEX,XBq “ ?pCX,XBq “ ?pXC,BCq `?pBC,BXq “ 2?pAC,CBq

“ ?pAC,CBq `?pEF, FAq “ ?pAM,BMq `?pEM,MAq “ ?pEM,BMq,
so the points M , E, X , and B are concyclic. Therefore, PE ¨ PX “ PM ¨ PB “ PK ¨ PD, so
the points E, K, D, and X are concyclic, as desired.
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Comment 1. We present here a different solution which uses similar ideas.
Perform the inversion ι with centre T and radius TD. It swaps B with C and E with F ; the point

D maps to itself. Let X 1 “ ιpXq. Observe that the points E, F , X, and X 1 are concyclic, as well as
the points B, C, X, and X 1. Then

?pCX 1,X 1F q “ ?pCX 1,X 1Xq `?pX 1X,X 1F q “ ?pCB,BXq `?pEX,EF q
“ ?pXC,CBq `?pEC,EF q “ ?pCA,CBq `?pBC,BF q “ ?pCA,AF q,

therefore the points C, X 1, A, and F are concyclic.
Let X 1F intersect AC at P , and let K be the second common point of DP and the circle pACDq.

Then
PK ¨ PD “ PA ¨ PC “ PX 1 ¨ PF “ PE ¨ PX;

hence, the points K, X, D, and E lie on some circle ω1, while the points K, X 1, D, and F lie on some
circle ω2. (These circles are distinct since =EXF ` =EDF ă =EAF ` =DCB ` =DBC ă 180˝).
The inversion ι swaps ω1 with ω2 and fixes their common point D, so it fixes their second common
point K. Thus TD “ TK and the perpendicular bisector of DK passes through T , as well as through
the centres of the circles pCDKAq and pDEKXq.
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Solution 2. We use only the first part of the Common remarks, namely, the facts that the
tuples pC,D,Q,Eq and pB,C,E, F q are both concyclic. We also introduce the point T “
BC XEF . Let the circle pCDEq meet BC again at E1. Since =E1CQ “ =DCE, the arcs DE

and QE1 of the circle pCDQq are equal, so DQ ‖ EE1.
Since BFEC is cyclic, the line AD forms equal angles with BC and EF , hence so does EE1.

Therefore, the triangle EE1T is isosceles, TE “ TE1, and T lies on the common perpendicular
bisector of EE1 and DQ.

Let U and V be the centres of circles pADEq and pCDQEq, respectively. Then UO1 is the
perpendicular bisector of AD. Moreover, the points U , V , and O2 belong to the perpendicular
bisector of DE. Since UO1 ‖ V T , in order to show that O1O2 passes through T , it suffices to
show that

O2U

O2V
“ O1U

TV
. p1q

Denote angles A, B, and C of the triangle ABC by α, β, and γ, respectively. Projecting
onto AC we obtain

O2U

O2V
“ pXE ´ AEq{2
pXE ` ECq{2 “

AX

CX
“ AX

BX
“ sinpγ ´ βq

sinα
p2q

The projection of O1U onto AC is pAC ´AEq{2 “ CE{2; the angle between O1U and AC

is 90˝ ´ α{2, so
O1U

EC
“ 1

2 sinpα{2q p3q

Next, we claim that E, V , C, and T are concyclic. Indeed, the point V lies on the per-
pendicular bisector of CE, as well as on the internal angle bisector of =CTF . Therefore, V
coincides with the midpoint of the arc CE of the circle pTCEq.

Now we have =EV C “ 2=EE1C “ 180˝´pγ´βq and =V ET “ =V E1T “ 90˝´=E1EC “
90˝ ´ α{2. Therefore,

EC

TV
“ sin=ETC

sin=V ET
“ sinpγ ´ βq

cospα{2q . p4q

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1O1

O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2O2

TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

UUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

E1



Shortlisted problems – solutions 63

Recalling p2q and multiplying p3q and p4q we establish p1q:
O2U

O2V
“ sinpγ ´ βq

sinα
“ 1

2 sinpα{2q ¨
sinpγ ´ βq
cospα{2q “ O1U

EC
¨ EC

TV
“ O1U

TV
.

Solution 3. Notice that =AQE “ =QCB and =AQF “ =QBC; so, if we replace the pointD
with Q in the problem set up, the points E, F , and T remain the same. So, by the Claim, we
have TQ2 “ TB ¨ TC “ TD2.

Thus, there exists a circle Γ centred at T and passing through D and Q. We denote the
second meeting point of the circles Γ and pADCq by K. Let the line AC meet the circle pDEKq
again at Y ; we intend to prove that Y “ X . As in Solution 1, this will yield that the point T ,
as well as the centres O1 and O2, all lie on the perpendicular bisector of DK.

Let L “ AD X BC. We perform an inversion centred at C; the images of the points
will be denoted by primes, e.g., A1 is the image of A. We obtain the following configuration,
constructed in a triangle A1CL1.

The points D1 and Q1 are chosen on the circumcircle Ω of A1L1C such that ?pL1C,D1Cq “
?pQ1C,A1Cq, which means that A1L1 ‖ D1Q1. The lines D1Q1 and A1C meet at E 1.

A circle Γ1 centred on CL1 passes through D1 and Q1. Notice here that B1 lies on the
segment CL1, and that =A1B1C “ =BAC “ 2=LAC “ 2=A1L1C, so that B1L1 “ B1A1, and B1
lies on the perpendicular bisector of A1L1 (which coincides with that of D1Q1). All this means
that B1 is the centre of Γ1.

Finally, K 1 is the second meeting point of A1D1 and Γ1, and Y 1 is the second meeting
point of the circle pD1K 1E 1q and the line A1E 1, We have ?pY 1K 1, K 1A1q “ ?pY 1E 1, E 1D1q “
?pY 1A1, A1L1q, so A1L1 is tangent to the circumcircle ω of the triangle Y 1A1K 1.

Let O and O˚ be the centres of Ω and ω, respectively. Then O˚A1 K A1L1 K B1O. The
projections of vectors

ÝÝÝÑ
O˚A1 and

ÝÝÑ
B1O onto K 1D1 are equal to

ÝÝÝÑ
K 1A1{2 “ ÝÝÝÑ

K 1D1{2 ´ ÝÝÝÑ
A1D1{2. SoÝÝÝÑ

O˚A1 “ ÝÝÑ
B1O, or equivalently

ÝÝÑ
A1O “ ÝÝÝÑ

O˚B1. Projecting this equality onto A1C, we see that the
projection of

ÝÝÝÑ
O˚B1 equals

ÝÝÑ
A1C{2. Since O˚ is projected to the midpoint of A1Y 1, this yields

that B1 is projected to the midpoint of CY 1, i.e., B1Y 1 “ B1C and =B1Y 1C “ =B1CY 1. In
the original figure, this rewrites as =CBY “ =BCY , so Y lies on the perpendicular bisector
of BC, as desired.
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Ω
ω

Comment 2. The point K appears to be the same in Solutions 1 and 3 (and Comment 1 as well).
One can also show that K lies on the circle passing through A, X, and the midpoint of the arc BAC.
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Comment 3. There are different proofs of the facts from the Common remarks, namely, the cyclicity
of B, C, E, and F , and the Claim. We present one such alternative proof here.

We perform the composition φ of a homothety with centre A and the reflection in AD, which maps
E to B. Let U “ φpDq. Then ?pBC,CDq “ ?pAD,DEq “ ?pBU,UDq, so the points B, U , C,
and D are concyclic. Therefore, ?pCU,UDq “ ?pCB,BDq “ ?pAD,DF q, so φpF q “ C. Then the
coefficient of the homothety is AC{AF “ AB{AE, and thus points C, E, F , and B are concyclic.

Denote the centres of the circles pEDF q and pBUCDq by O3 and O4, respectively. Then φpO3q “
O4, hence ?pO3D,DAq “ ´?pO4U,UAq “ ?pO4D,DAq, whence the circle pBDCq is tangent to the
circle pEDF q.

Now, the radical axes of circles pDEF q, pBDCq and pBCEF q intersect at T , and the claim follows.
A

B C
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O4

This suffices for Solution 1 to work. However, Solutions 2 and 3 need properties of point Q,
established in Common remarks before Solution 1.

Comment 4. In the original problem proposal, the point X was hidden. Instead, a circle γ was
constructed such that D and E lie on γ, and its center is collinear with O1 and T . The problem
requested to prove that, in a fixed triangle ABC, independently from the choice of D on the bisector
of =BAC, all circles γ pass through a fixed point.
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G8. Let ω be the circumcircle of a triangle ABC, and let ΩA be its excircle which is tangent
to the segment BC. Let X and Y be the intersection points of ω and ΩA. Let P and Q be the
projections of A onto the tangent lines to ΩA at X and Y , respectively. The tangent line at P
to the circumcircle of the triangle APX intersects the tangent line at Q to the circumcircle of
the triangle AQY at a point R. Prove that AR K BC.

Solution 1. Let D be the point of tangency of BC and ΩA. Let D1 be the point such that
DD1 is a diameter of ΩA. Let R1 be (the unique) point such that AR1 K BC and R1D1 ‖ BC.
We shall prove that R1 coincides with R.

Let PX intersect AB and D1R1 at S and T , respectively. Let U be the ideal common
point of the parallel lines BC and D1R1. Note that the (degenerate) hexagon ASXTUC is
circumscribed around ΩA, hence by the Brianchon theorem AT , SU , and XC concur at a
point which we denote by V . Then V S ‖ BC. It follows that ?pSV, V Xq “ ?pBC,CXq “
?pBA,AXq, hence AXSV is cyclic. Therefore, ?pPX,XAq “ ?pSV, V Aq “ ?pR1T, TAq.
Since =APT “ =AR1T “ 90˝, the quadrilateral APR1T is cyclic. Hence,

?pXA,AP q “ 90˝ ´?pPX,XAq “ 90˝ ´?pR1T, TAq “ ?pTA,AR1q “ ?pTP, PR1q.
It follows that PR1 is tangent to the circle pAPXq.

Analogous argument shows that QR1 is tangent to the circle pAQY q. Therefore, R “ R1
and AR K BC.

Comment 1. After showing ?pPX,XAq “ ?pR1T, TAq one can finish the solution as follows. There
exists a spiral similarity mapping the triangle ATR1 to the triangle AXP . So the triangles ATX

and AR1P are similar and equioriented. Thus, ?pTX,XAq “ ?pR1P,PAq, which implies that PR1 is
tangent to the circle pAPXq.

Solution 2. Let J and r be the center and the radius of ΩA. Denote the diameter of ω by d

and its center by O. By Euler’s formula, OJ2 “ pd{2q2 ` dr, so the power of J with respect to
ω equals dr.
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Let JX intersect ω again at L. Then JL “ d. Let LK be a diameter of ω and let M be
the midpoint of JK. Since JL “ LK, we have =LMK “ 90˝, so M lies on ω. Let R1 be the
point such that R1P is tangent to the circle pAPXq and AR1 K BC. Note that the line AR1 is
symmetric to the line AO with respect to AJ .

A
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Lemma. Let M be the midpoint of the side JK in a triangle AJK. Let X be a point on the
circle pAMKq such that =JXK “ 90˝. Then there exists a point T on the line KX such that
the triangles AKJ and AJT are similar and equioriented.
Proof. Note that MX “MK. We construct a parallelogram AJNK. Let T be a point on KX

such that ?pNJ, JAq “ ?pKJ, JT q. Then
?pJN,NAq “ ?pKA,AMq “ ?pKX,XMq “ ?pMK,KXq “ ?pJK,KT q.

So there exists a spiral similarity with center J mapping the triangle AJN to the triangle
TJK. Therefore, the triangles NJK and AJT are similar and equioriented. It follows that the
triangles AKJ and AJT are similar and equioriented. l

A

JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ

KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK

MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

PPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPPP

P ∗

R′

T

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′R∗ = A′

ω



Shortlisted problems – solutions 67

Back to the problem, we construct a point T as in the lemma. We perform the composition
φ of inversion with centre A and radius AJ and reflection in AJ . It is known that every triangle
AEF is similar and equioriented to AφpF qφpEq.

So φpKq “ T and φpT q “ K. Let P ˚ “ φpP q and R˚ “ φpR1q. Observe that φpTKq is a
circle with diameter AP ˚. Let AA1 be a diameter of ω. Then P ˚K K AK K A1K, so A1 lies on
P ˚K. The triangles AR1P and AP ˚R˚ are similar and equioriented, hence

?pAA1, A1P ˚q “ ?pAA1, A1Kq “ ?pAX,XP q “ ?pAX,XP q “ ?pAP, PR1q “ ?pAR˚, R˚P ˚q,
so A, A1, R˚, and P ˚ are concyclic. Since A1 and R˚ lie on AO, we obtain R˚ “ A1. So
R1 “ φpA1q, and φpA1qP is tangent to the circle pAPXq.

An identical argument shows that φpA1qQ is tangent to the circle pAQY q. Therefore, R “
φpA1q and AR K BC.

Comment 2. One of the main ideas of Solution 2 is to get rid of the excircle, along with points B

and C. After doing so we obtain the following fact, which is, essentially, proved in Solution 2.

Let ω be the circumcircle of a triangle AK1K2. Let J be a point such that the midpoints of JK1

and JK2 lie on ω. Points X and Y are chosen on ω so that =JXK1 “ =JY K2 “ 90˝. Let P and Q be
the projections of A onto XK1 and Y K2, respectively. The tangent line at P to the circumcircle of the
triangle APX intersects the tangent line at Q to the circumcircle of the triangle AQY at a point R.
Then the reflection of the line AR in AJ passes through the centre O of ω.
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Number Theory

N1. Determine all integers n ě 1 for which there exists a pair of positive integers pa, bq
such that no cube of a prime divides a2 ` b` 3 and

ab` 3b` 8

a2 ` b` 3
“ n.

Answer: The only integer with that property is n “ 2.

Solution. As b ” ´a2 ´ 3 pmod a2 ` b` 3q, the numerator of the given fraction satisfies

ab` 3b` 8 ” ap´a2 ´ 3q ` 3p´a2 ´ 3q ` 8 ” ´pa` 1q3 pmod a2 ` b` 3q.
As a2 ` b` 3 is not divisible by p3 for any prime p, if a2 ` b ` 3 divides pa ` 1q3 then it does
also divide pa` 1q2. Since

0 ă pa` 1q2 ă 2pa2 ` b` 3q,
we conclude pa` 1q2 “ a2` b` 3. This yields b “ 2pa´ 1q and n “ 2. The choice pa, bq “ p2, 2q
with a2 ` b` 3 “ 9 shows that n “ 2 indeed is a solution.
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N2. Let n ě 100 be an integer. The numbers n, n ` 1, . . . , 2n are written on n ` 1 cards,
one number per card. The cards are shuffled and divided into two piles. Prove that one of the
piles contains two cards such that the sum of their numbers is a perfect square.

Solution. To solve the problem it suffices to find three squares and three cards with numbers
a, b, c on them such that pairwise sums a ` b, b ` c, a ` c are equal to the chosen squares. By
choosing the three consecutive squares p2k ´ 1q2, p2kq2, p2k ` 1q2 we arrive at the triple

pa, b, cq “ `
2k2 ´ 4k, 2k2 ` 1, 2k2 ` 4k

˘
.

We need a value for k such that

n ď 2k2 ´ 4k, and 2k2 ` 4k ď 2n.

A concrete k is suitable for all n with

n P “k2 ` 2k, 2k2 ´ 4k ` 1
‰ “: Ik.

For k ě 9 the intervals Ik and Ik`1 overlap because

pk ` 1q2 ` 2pk ` 1q ď 2k2 ´ 4k ` 1.

Hence I9 Y I10 Y . . . “ r99,8q, which proves the statement for n ě 99.

Comment 1. There exist approaches which only work for sufficiently large n.

One possible approach is to consider three cards with numbers 70k2, 99k2, 126k2 on them. Then
their pairwise sums are perfect squares and so it suffices to find k such that 70k2 ě n and 126k2 ď 2n
which exists for sufficiently large n.

Another approach is to prove, arguing by contradiction, that a and a ´ 2 are in the same pile
provided that n is large enough and a is sufficiently close to n. For that purpose, note that every pair
of neighbouring numbers in the sequence a, x2´a, a`p2x`1q, x2`2x`3´a, a´2 adds up to a perfect
square for any x; so by choosing x “ t

?
2au` 1 and assuming that n is large enough we conclude that

a and a´ 2 are in the same pile for any a P rn` 2, 3n{2s. This gives a contradiction since it is easy to
find two numbers from rn` 2, 3n{2s of the same parity which sum to a square.

It then remains to separately cover the cases of small n which appears to be quite technical.

Comment 2. An alternative formulation for this problem could ask for a proof of the statement
for all n ą 106. An advantage of this formulation is that some solutions, e.g. those mentioned in
Comment 1 need not contain a technical part which deals with the cases of small n. However, the
original formulation seems to be better because the bound it gives for n is almost sharp, see the next
comment for details.

Comment 3. The statement of the problem is false for n “ 98. As a counterexample, the first pile
may contain the even numbers from 98 to 126, the odd numbers from 129 to 161, and the even numbers
from 162 to 196.
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N3. Find all positive integers n with the following property: the k positive divisors of n
have a permutation pd1, d2, . . . , dkq such that for every i “ 1, 2, . . . , k, the number d1 ` ¨ ¨ ¨ ` di
is a perfect square.

Answer: n “ 1 and n “ 3.

Solution. For i “ 1, 2, . . . , k let d1 ` . . . ` di “ s2i , and define s0 “ 0 as well. Obviously
0 “ s0 ă s1 ă s2 ă . . . ă sk, so

si ě i and di “ s2i ´ s2i´1
“ psi ` si´1qpsi ´ si´1q ě si ` si´1 ě 2i´ 1. p1q

The number 1 is one of the divisors d1, . . . , dk but, due to di ě 2i ´ 1, the only possibility
is d1 “ 1.

Now consider d2 and s2 ě 2. By definition, d2 “ s2
2
´ 1 “ ps2 ´ 1qps2 ` 1q, so the numbers

s2 ´ 1 and s2 ` 1 are divisors of n. In particular, there is some index j such that dj “ s2 ` 1.
Notice that

s2 ` s1 “ s2 ` 1 “ dj ě sj ` sj´1; p2q
since the sequence s0 ă s1 ă . . . ă sk increases, the index j cannot be greater than 2. Hence,
the divisors s2 ´ 1 and s2 ` 1 are listed among d1 and d2. That means s2 ´ 1 “ d1 “ 1 and
s2 ` 1 “ d2; therefore s2 “ 2 and d2 “ 3.

We can repeat the above process in general.

Claim. di “ 2i´ 1 and si “ i for i “ 1, 2, . . . , k.
Proof. Apply induction on i. The Claim has been proved for i “ 1, 2. Suppose that we have
already proved d “ 1, d2 “ 3, . . . , di “ 2i´ 1, and consider the next divisor di`1:

di`1 “ s2i`1
´ s2i “ s2i`1

´ i2 “ psi`1 ´ iqpsi`1 ` iq.
The number si`1 ` i is a divisor of n, so there is some index j such that dj “ si`1 ` i.

Similarly to (2), by (1) we have

si`1 ` si “ si`1 ` i “ dj ě sj ` sj´1; p3q
since the sequence s0 ă s1 ă . . . ă sk increases, (3) forces j ď i ` 1. On the other hand,
dj “ si`1 ` i ą 2i ą di ą di´1 ą . . . ą d1, so j ď i is not possible. The only possibility is
j “ i` 1.

Hence,
si`1 ` i “ di`1 “ s2i`1

´ s2i “ s2i`1
´ i2;

s2i`1
´ si`1 “ ipi` 1q.

By solving this equation we get si`1 “ i` 1 and di`1 “ 2i` 1, that finishes the proof. l

Now we know that the positive divisors of the number n are 1, 3, 5, . . . , n´2, n. The greatest
divisor is dk “ 2k´ 1 “ n itself, so n must be odd. The second greatest divisor is dk´1 “ n´ 2;
then n´ 2 divides n “ pn´ 2q ` 2, so n ´ 2 divides 2. Therefore, n must be 1 or 3.

The numbers n “ 1 and n “ 3 obviously satisfy the requirements: for n “ 1 we have k “ 1

and d1 “ 12; for n “ 3 we have k “ 2, d1 “ 12 and d1 ` d2 “ 1` 3 “ 22.
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N4. Alice is given a rational number r ą 1 and a line with two points B ‰ R, where
point R contains a red bead and point B contains a blue bead. Alice plays a solitaire game by
performing a sequence of moves. In every move, she chooses a (not necessarily positive) integer
k, and a bead to move. If that bead is placed at point X , and the other bead is placed at Y ,
then Alice moves the chosen bead to point X 1 with

ÝÝÑ
Y X 1 “ rk

ÝÝÑ
Y X .

Alice’s goal is to move the red bead to the point B. Find all rational numbers r ą 1 such
that Alice can reach her goal in at most 2021 moves.

Answer: All r “ pb` 1q{b with b “ 1, . . . , 1010.

Solution. Denote the red and blue beads by R and B, respectively. Introduce coordinates
on the line and identify the points with their coordinates so that R “ 0 and B “ 1. Then,
during the game, the coordinate of R is always smaller than the coordinate of B. Moreover,
the distance between the beads always has the form rℓ with ℓ P Z, since it only multiplies
by numbers of this form. Denote the value of the distance after the mth move by dm “ rαm ,
m “ 0, 1, 2, . . . (after the 0th move we have just the initial position, so α0 “ 0).

If some bead is moved in two consecutive moves, then Alice could instead perform a single
move (and change the distance from di directly to di`2) which has the same effect as these two
moves. So, if Alice can achieve her goal, then she may as well achieve it in fewer (or the same)
number of moves by alternating the moves of B and R. In the sequel, we assume that Alice
alternates the moves, and that R is shifted altogether t times.

If R is shifted in the mth move, then its coordinate increases by dm ´ dm`1. Therefore, the
total increment of R’s coordinate, which should be 1, equals

either pd0 ´ d1q ` pd2 ´ d3q ` ¨ ¨ ¨ ` pd2t´2 ´ d2t´1q “ 1`
t´1ÿ
i“1

rα2i ´
tÿ

i“1

rα2i´1 ,

or pd1 ´ d2q ` pd3 ´ d4q ` ¨ ¨ ¨ ` pd2t´1 ´ d2tq “
tÿ

i“1

rα2i´1 ´
tÿ

i“1

rα2i,

depending on whether R or B is shifted in the first move. Moreover, in the former case we
should have t ď 1011, while in the latter one we need t ď 1010. So both cases reduce to an
equation

nÿ
i“1

rβi “
n´1ÿ
i“1

rγi , βi, γi P Z, (1)

for some n ď 1011. Thus, if Alice can reach her goal, then this equation has a solution for
n “ 1011 (we can add equal terms to both sums in order to increase n).

Conversely, if (1) has a solution for n “ 1011, then Alice can compose a corresponding
sequence of distances d0, d1, d2, . . . , d2021 and then realise it by a sequence of moves. So the
problem reduces to the solvability of (1) for n “ 1011.

Assume that, for some rational r, there is a solution of (1). Write r in lowest terms as
r “ a{b. Substitute this into (1), multiply by the common denominator, and collect all terms
on the left hand side to get

2n´1ÿ
i“1

p´1qiaµibN´µi “ 0, µi P t0, 1, . . . , Nu, (2)

for some N ě 0. We assume that there exist indices j´ and j` such that µj´ “ 0 and µj` “ N .
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Reducing (2) modulo a´ b (so that a ” b), we get

0 “
2n´1ÿ
i“1

p´1qiaµibN´µi ”
2n´1ÿ
i“1

p´1qibµibN´µi “ ´bN mod pa´ bq.

Since gcdpa´ b, bq “ 1, this is possible only if a´ b “ 1.
Reducing (2) modulo a` b (so that a ” ´b), we get

0 “
2n´1ÿ
i“1

p´1qiaµibN´µi ”
2n´1ÿ
i“1

p´1qip´1qµibµibN´µi “ SbN mod pa` bq

for some odd (thus nonzero) S with |S| ď 2n ´ 1. Since gcdpa` b, bq “ 1, this is possible only
if a` b | S. So a` b ď 2n´ 1, and hence b “ a´ 1 ď n´ 1 “ 1010.

Thus we have shown that any sought r has the form indicated in the answer. It remains to
show that for any b “ 1, 2, . . . , 1010 and a “ b` 1, Alice can reach the goal. For this purpose,
in (1) we put n “ a, β1 “ β2 “ ¨ ¨ ¨ “ βa “ 0, and γ1 “ γ2 “ ¨ ¨ ¨ “ γb “ 1.

Comment 1. Instead of reducing modulo a ` b, one can reduce modulo a and modulo b. The first
reduction shows that the number of terms in (2) with µi “ 0 is divisible by a, while the second shows
that the number of terms with µi “ N is divisible by b.

Notice that, in fact, N ą 0, as otherwise (2) contains an alternating sum of an odd number of
equal terms, which is nonzero. Therefore, all terms listed above have different indices, and there are
at least a` b of them.

Comment 2. Another way to investigate the solutions of equation (1) is to consider the Laurent
polynomial

Lpxq “
nÿ

i“1

xβi ´
n´1ÿ
i“1

xγi .

We can pick a sufficiently large integer d so that P pxq “ xdLpxq is a polynomial in Zrxs. Then
P p1q “ 1, (3)

and
1 ď |P p´1q| ď 2021. (4)

If r “ p{q with integers p ą q ě 1 is a rational number with the properties listed in the problem
statement, then P pp{qq “ Lpp{qq “ 0. As P pxq has integer coefficients,

pp´ qxq | P pxq. (5)

Plugging x “ 1 into (5) gives pp´ qq | P p1q “ 1, which implies p “ q ` 1. Moreover, plugging x “ ´1
into (5) gives pp ` qq | P p´1q, which, along with (4), implies p ` q ď 2021 and q ď 1010. Hence
x “ pq ` 1q{q for some integer q with 1 ď q ď 1010.
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N5. Prove that there are only finitely many quadruples pa, b, c, nq of positive integers such
that

n! “ an´1 ` bn´1 ` cn´1.

Solution. For fixed n there are clearly finitely many solutions; we will show that there is no
solution with n ą 100. So, assume n ą 100. By the AM–GM inequality,

n! “ 2npn´ 1qpn´ 2qpn´ 3q ¨ p3 ¨ 4 ¨ ¨ ¨ pn´ 4qq
ď 2pn´ 1q4

ˆ
3` ¨ ¨ ¨ ` pn ´ 4q

n´ 6

˙n´6

“ 2pn´ 1q4
ˆ
n´ 1

2

˙n´6

ă
ˆ
n´ 1

2

˙n´1

,

thus a, b, c ă pn ´ 1q{2.
For every prime p and integer m ‰ 0, let νppmq denote the p-adic valuation of m; that is,

the greatest non-negative integer k for which pk divides m. Legendre’s formula states that

νppn!q “
8ÿ
s“1

Z
n

ps

^
,

and a well-know corollary of this formula is that

νppn!q ă
8ÿ
s“1

n

ps
“ n

p´ 1
. p♥q

If n is odd then an´1, bn´1, cn´1 are squares, and by considering them modulo 4 we conclude
that a, b and c must be even. Hence, 2n´1 | n! but that is impossible for odd n because
ν2pn!q “ ν2ppn´ 1q!q ă n ´ 1 by p♥q.

From now on we assume that n is even. If all three numbers a`b, b`c, c`a are powers of 2
then a, b, c have the same parity. If they all are odd, then n! “ an´1 ` bn´1 ` cn´1 is also odd
which is absurd. If all a, b, c are divisible by 4, this contradicts ν2pn!q ď n´ 1. If, say, a is not
divisible by 4, then 2a “ pa` bq`pa` cq´pb` cq is not divisible by 8, and since all a` b, b` c,
c`a are powers of 2, we get that one of these sums equals 4, so two of the numbers of a, b, c are
equal to 2. Say, a “ b “ 2, then c “ 2r ´ 2 and, since c | n!, we must have c | an´1 ` bn´1 “ 2n

implying r “ 2, and so c “ 2, which is impossible because n! ” 0 ı 3 ¨ 2n´1 pmod 5q.
So now we assume that the sum of two numbers among a, b, c, say a` b, is not a power of 2,

so it is divisible by some odd prime p. Then p ď a` b ă n and so cn´1 “ n!´ pan´1 ` bn´1q is
divisible by p. If p divides a and b, we get pn´1 | n!, contradicting p♥q. Next, using p♥q and
the Lifting the Exponent Lemma we get

νpp1q`νpp2q`¨ ¨ ¨`νppnq “ νppn!q “ νppn!´cn´1q “ νp
`
an´1 ` bn´1

˘ “ νppa`bq`νppn´1q. p♦q

In view of p♦q, no number of 1, 2, . . . , n can be divisible by p, except a` b and n ´ 1 ą a` b.
On the other hand, p|c implies that p ă n{2 and so there must be at least two such numbers.
Hence, there are two multiples of p among 1, 2, . . . , n, namely a` b “ p and n ´ 1 “ 2p. But
this is another contradiction because n ´ 1 is odd. This final contradiction shows that there is
no solution of the equation for n ą 100.

Comment 1. The original version of the problem asked to find all solutions to the equation. The
solution to that version is not much different but is more technical.
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Comment 2. To find all solutions we can replace the bound a, b, c ă pn ´ 1q{2 for all n with a
weaker bound a, b, c ď n{2 only for even n, which is a trivial application of AM–GM to the tuple
p2, 3, . . . , nq. Then we may use the same argument for odd n (it works for n ě 5 and does not require
any bound on a, b, c), and for even n the same solution works for n ě 6 unless we have a` b “ n´ 1
and 2νppn´ 1q “ νppn!q. This is only possible for p “ 3 and n “ 10 in which case we can consider the
original equation modulo 7 to deduce that 7 | abc which contradicts the fact that 79 ą 10!. Looking at
n ď 4 we find four solutions, namely,

pa, b, c, nq “ p1, 1, 2, 3q, p1, 2, 1, 3q, p2, 1, 1, 3q, p2, 2, 2, 4q.

Comment 3. For sufficiently large n, the inequality a, b, c ă pn ´ 1q{2 also follows from Stirling’s
formula.
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N6. Determine all integers n ě 2 with the following property: every n pairwise distinct
integers whose sum is not divisible by n can be arranged in some order a1, a2, . . . , an so that
n divides 1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an.

Answer: All odd integers and all powers of 2.

Solution. If n “ 2ka, where a ě 3 is odd and k is a positive integer, we can consider a set
containing the number 2k ` 1 and n ´ 1 numbers congruent to 1 modulo n. The sum of these
numbers is congruent to 2k modulo n and therefore is not divisible by n; for any permutation
pa1, a2, . . . , anq of these numbers

1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an ” 1` ¨ ¨ ¨ ` n ” 2k´1ap2ka` 1q ı 0 pmod 2kq

and a fortiori 1 ¨ a1 ` 2 ¨ a2 ` ¨ ¨ ¨ ` n ¨ an is not divisible by n.
From now on, we suppose that n is either odd or a power of 2. Let S be the given set of

integers, and s be the sum of elements of S.

Lemma 1. If there is a permutation paiq of S such that pn, sq divides řn

i“1
iai, then there is a

permutation pbiq of S such that n divides
řn

i“1
ibi.

Proof. Let r “ řn
i“1

iai. Consider the permutation pbiq defined by bi “ ai`x, where aj`n “ aj .
For this permutation, we have

nÿ
i“1

ibi “
nÿ

i“1

iai`x ”
nÿ

i“1

pi´ xqai ” r ´ sx pmod nq.

Since pn, sq divides r, the congruence r ´ sx ” 0 pmod nq admits a solution.

Lemma 2. Every set T of km integers, m ą 1, can be partitioned into m sets of k integers so
that in every set either the sum of elements is not divisible by k or all the elements leave the
same remainder upon division by k.

Proof. The base case, m “ 2. If T contains k elements leaving the same remainder upon division
by k, we form one subset A of these elements; the remaining elements form a subset B. If k
does not divide the sum of all elements of B, we are done. Otherwise it is enough to exchange
any element of A with any element of B not congruent to it modulo k, thus making sums of
both A and B not divisible by k. This cannot be done only when all the elements of T are
congruent modulo k; in this case any partition will do.

If no k elements of T have the same residue modulo k, there are three elements a, b, c P T

leaving pairwise distinct remainders upon division by k. Let t be the sum of elements of T . It
suffices to find A Ă T such that |A| “ k and

ř
xPA x ı 0, t pmod kq: then neither the sum of

elements of A nor the sum of elements of B “ T zA is divisible by k. Consider U 1 Ă T z ta, b, cu
with |U 1| “ k ´ 1. The sums of elements of three sets U 1 Y tau, U 1 Y tbu, U 1 Y tcu leave three
different remainders upon division by k, and at least one of them is not congruent either to 0
or to t.

Now let m ą 2. If T contains k elements leaving the same remainder upon division by k,
we form one subset A of these elements and apply the inductive hypothesis to the remaining
kpm ´ 1q elements. Otherwise, we choose any U Ă T , |U | “ k ´ 1. Since all the remaining
elements cannot be congruent modulo k, there is a P T z U such that a ı ´ř

xPU x pmod kq.
Now we can take A “ U Y tau and apply the inductive hypothesis to T z A.
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Now we are ready to prove the statement of the problem for all odd n and n “ 2k. The
proof is by induction.

If n is prime, the statement follows immediately from Lemma 1, since in this case pn, sq “ 1.
Turning to the general case, we can find prime p and an integer t such that pt | n and pt ∤ s.
By Lemma 2, we can partition S into p sets of n

p
“ k elements so that in every set either the

sum of numbers is not divisible by k or all numbers have the same residue modulo k.
For sets in the first category, by the inductive hypothesis there is a permutation paiq such

that k |řk

i“1
iai.

If n (and therefore k) is odd, then for each permutation pbiq of a set in the second category
we have

kÿ
i“1

ibi ” b1
kpk ` 1q

2
” 0 pmod kq.

By combining such permutation for all sets of the partition, we get a permutation pciq of S
such that k | řn

i“1
ici. Since this sum is divisible by k, and k is divisible by pn, sq, we are done

by Lemma 1.
If n “ 2s, we have p “ 2 and k “ 2s´1. Then for each of the subsets there is a permutation

pa1, . . . , akq such thatřk
i“1

iai is divisible by 2s´2 “ k
2
: if the subset belongs to the first category,

the expression is divisible even by k, and if it belongs to the second one,

kÿ
i“1

iai ” a1
kpk ` 1q

2
” 0 m̂od

k

2

˙
.

Now the numbers of each permutation should be multiplied by all the odd or all the even
numbers not exceeding n in increasing order so that the resulting sums are divisible by k:

kÿ
i“1

p2i´ 1qai ”
kÿ

i“1

2iai ” 2

kÿ
i“1

iai ” 0 pmod kq.

Combining these two sums, we again get a permutation pciq of S such that k | řn

i“1
ici, and

finish the case by applying Lemma 1.

Comment. We cannot dispense with the condition that n does not divide the sum of all elements.
Indeed, for each n ą 1 and the set consisting of 1, ´1, and n´ 2 elements divisible by n the required
permutation does not exist.
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N7. Let a1, a2, a3, . . . be an infinite sequence of positive integers such that an`2m divides
an`an`m for all positive integers n and m. Prove that this sequence is eventually periodic, i.e.
there exist positive integers N and d such that an “ an`d for all n ą N .

Solution. We will make repeated use of the following simple observation:
Lemma 1. If a positive integer d divides an and an´m for some m and n ą 2m, it also divides
an´2m. If d divides an and an´2m, it also divides an´m.
Proof. Both parts are obvious since an divides an´2m ` an´m. l
Claim. The sequence panq is bounded.
Proof. Suppose the contrary. Then there exist infinitely many indices n such that an is greater
than each of the previous terms a1, a2, . . . , an´1. Let an “ k be such a term, n ą 10. For each
s ă n

2
the number an “ k divides an´s ` an´2s ă 2k, therefore

an´s ` an´2s “ k.

In particular,
an “ an´1 ` an´2 “ an´2 ` an´4 “ an´4 ` an´8,

that is, an´1 “ an´4 and an´2 “ an´8. It follows from Lemma 1 that an´1 divides an´1´3s for
3s ă n ´ 1 and an´2 divides an´2´6s for 6s ă n ´ 2. Since at least one of the numbers an´1

and an´2 is at least an{2, so is some ai with i ď 6. However, an can be arbitrarily large, a
contradiction. l

Since panq is bounded, there exist only finitely many i for which ai appears in the sequence
finitely many times. In other words, there exists N such that if ai “ t and i ą N , then aj “ t

for infinitely many j.
Clearly the sequence pan`Nqną0 satisfies the divisibility condition, and it is enough to prove

that this sequence is eventually periodic. Thus truncating the sequence if necessary, we can
assume that each number appears infinitely many times in the sequence. Let k be the maximum
number appearing in the sequence.
Lemma 2. If a positive integer d divides an for some n, then the numbers i such that d divides
ai form an arithmetical progression with an odd difference.
Proof. Let i1 ă i2 ă i3 ă . . . be all the indices i such that d divides ai. If is ` is`1 is even, it
follows from Lemma 1 that d also divides a is`is`1

2

, impossible since is ă is`is`1

2
ă is`1. Thus

is and is`1 are always of different parity, and therefore is ` is`2 is even. Applying Lemma 1
again, we see that d divides a is`is`2

2

, hence is`is`2

2
“ is`1, l

We are ready now to solve the problem.
The number of positive divisors of all terms of the progression is finite. Let ds be the

difference of the progression corresponding to s, that is, s divides an if and only if it divides
an`tds for any positive integer t. Let D be the product of all ds. Then each s dividing a term
of the progression divides an if and only if it divides an`D. This means that the sets of divisors
of an and an`D coincide, and an`D “ an. Thus D is a period of the sequence.

Comment. In the above solution we did not try to find the exact structure of the periodic part of
panq. A little addition to the argument above shows that the period of the sequence has one of the
following three forms:

(i) t (in this case the sequence is eventually constant);

(ii) t, 2t, 3t or 2t, t, 3t (so the period is 3);

(iii) t, t, . . . , 2t (the period can be any odd number).
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In these three cases t can be any positive integer. It is easy to see that all three cases satisfy the
original condition.

We again denote by k be the maximum number appearing in the sequence. All the indices i such
that ai “ k form an arithmetical progression. If the difference of this progression is 1, the sequence
panq is constant, and we get the case (i). Assume that the difference T is at least 3.

Take an index n such that an “ k and let a “ an´2, b “ an´1. We have a, b ă k and therefore
k “ an “ an´1 ` an´2 “ a ` b. If a “ b “ k

2
, then all the terms a1, a2, . . . , an are divisible by k{2,

that is, are equal to k or k{2. Since the indices i such that ai “ k form an arithmetical progression
with odd diference, we get the case (iii).

Suppose now that a ‰ b.

Claim. For n
2
ă m ă n we have am “ a if m ” n´ 2 pmod 3q and am “ b if m ” n´ 1 pmod 3q.

Proof. The number k “ an divides an´2 ` an´1 “ a` b and an´4 ` an´2 “ an´4 ` a and is therefore
equal to these sums (since a, b ă k and ai ď k for all i). Therefore an´1 “ an´4 “ b, that is, an´4 ă k,
an´4 ` an´8 “ k and an´8 “ an´2 “ a. One of the numbers a and b is greater than k{2.

If b “ an´1 “ an´4 ą k
2
, it follows from Lemma 1 that an´1 divides an´1´3s when 3s ă n´ 1, and

therefore an´1´3s “ b when 3s ă n´1. When 6s ă n´4, k also divides an´4´6s`an´2´3s “ b`an´2´3s,
thus, an´2´3s “ k ´ b “ a.

If a “ an´2 “ an´8 ą k
2
, all the terms an´2´6s with 6s ă n ´ 2 are divisible by a, that is, the

indices i for which a divides ai form a progression with difference dividing 6. Since this difference is
odd and greater than 1, it must be 3, that is, an´2´3s “ a when 3s ă n´ 2. Similarly to the previous
case, we have an´1´3s “ an ´ an´2´6s “ k ´ a “ b when 6s ă n´ 2. l

Let an and an`T be two consecutive terms of the sequence equal to k. If n is large enough,
n`T
2

ă n ´ 2, and applying the claim to n ` T instead of n we see that the three consecutive terms
an´2 “ a, an´1 “ b, an “ k must be equal to an`T´2, an`T´1 and an`T respectively. Thus, for some
i we have ai`3s “ a and ai`1`3s “ b for all s. Truncating the sequence again if necessary, we may
assume that a3s`1 “ a and a3s`2 “ b for all s. We know also that an “ k if and only if n is divisible
by T (incidentally, this proves that T is divisible by 3).

If a3s “ c for some integer s, each of the numbers a, b, c divides the sum of the other two. It is
easy to see that these numbers are proportional to one of the triplets (1, 1, 1), (1, 1, 2) and (1, 2, 3) in
some order. It follows that the greater of the two numbers a and b is the smaller multiplied by 2, 3 or
3{2. The last two cases are impossible because then c cannot be the maximum element in the triplet
pa, b, cq, while c “ k “ a ` b for infinitely many s. Thus the only possible case is 2, the numbers a

and b are k{3 and 2k{3 in some order, and the only possible values of c are k and k{3. Suppose that
a3s “ k{3 for some s ą 1. We can choose s so that a3s`3 “ k. Therefore T , which we already know to
be odd and divisible by 3, is greater than 3, that is, at least 9. Then a3s´3 ‰ k, and the only other
possibility is a3s´3 “ k{3. However, a3s`3 “ k must divide a3s ` a3s´3 “ 2k{3, which is impossible.
We have proved then that a3s “ k for all s ą 1, which is the case (ii).



80 Saint-Petersburg — Russia, 16th–24th July 2021

N8. For a polynomial P pxq with integer coefficients let P 1pxq “ P pxq and P k`1pxq “
P pP kpxqq for k ě 1. Find all positive integers n for which there exists a polynomial P pxq with
integer coefficients such that for every integer m ě 1, the numbers Pmp1q, . . . , Pmpnq leave
exactly rn{2ms distinct remainders when divided by n.

Answer: All powers of 2 and all primes.

Solution. Denote the set of residues modulo ℓ by Zℓ. Observe that P can be regarded as a
function Zℓ Ñ Zℓ for any positive integer ℓ. Denote the cardinality of the set PmpZℓq by fm,ℓ.
Note that fm,n “ rn{2ms for all m ě 1 if and only if fm`1,n “ rfm,n{2s for all m ě 0.

Part 1. The required polynomial exists when n is a power of 2 or a prime.

If n is a power of 2, set P pxq “ 2x.
If n “ p is an odd prime, every function f : Zp Ñ Zp coincides with some polynomial with

integer coefficients. So we can pick the function that sends x P t0, 1, . . . , p´ 1u to tx{2u.

Part 2. The required polynomial does not exist when n is not a prime power.

Let n “ ab where a, b ą 1 and gcdpa, bq “ 1. Note that, since gcdpa, bq “ 1,

fm,ab “ fm,afm,b

by the Chinese remainder theorem. Also, note that, if fm,ℓ “ fm`1,ℓ, then P permutes the
image of Pm on Zℓ, and therefore fs,ℓ “ fm,ℓ for all s ą m. So, as fm,ab “ 1 for sufficiently large
m, we have for each m

fm,a ą fm`1,a or fm,a “ 1, fm,b ą fm`1,b or fm,b “ 1.

Choose the smallest m such that fm`1,a “ 1 or fm`1,b “ 1. Without loss of generality assume
that fm`1,a “ 1. Then fm`1,ab “ fm`1,b ă fm,b ď fm,ab{2 ď fm`1,ab, a contradiction.

Part 3. The required polynomial does not exist when n is an odd prime power that is not a
prime.

Let n “ pk, where p ě 3 is prime and k ě 2. For r P Zp let Sr denote the subset of Zpk

consisting of numbers congruent to r modulo p. We denote the cardinality of a set S by |S|.
Claim. For any residue r modulo p, either |P pSrq| “ pk´1 or |P pSrq| ď pk´2.

Proof. Recall that P pr ` hq “ P prq ` hP 1prq ` h2Qpr, hq, where Q is an integer polynomial.
If p | P 1prq, then P pr ` psq ” P prq pmod p2q, hence all elements of P pSrq are congruent

modulo p2. So in this case |P pSrq| ď pk´2.
Now we show that p ∤ P 1prq implies |P pSrq| “ pk´1 for all k.
Suppose the contrary: |P pSrq| ă pk´1 for some k ą 1. Let us choose the smallest k

for which this is so. To each residue in P pSrq we assign its residue modulo pk´1; denote
the resulting set by P pS, rq. We have |P pS, rq| “ pk´2 by virtue of minimality of k. Then
|P pSrq| ă pk´1 “ p ¨ |P pS, rq|, that is, there is u “ P pxq P P pSrq (x ” r pmod pq) and t ı 0

pmod pq such that u` pk´1t R P pSrq.
Note that P px ` pk´1sq ” u ` pk´1sP 1pxq pmod pkq. Since P px ` pk´1sq ı u ` pk´1t

pmod pkq, the congruence pk´1sP 1pxq ” pk´1t pmod pkq has no solutions. So the congruence
sP 1pxq ” t pmod pq has no solutions, which contradicts p ∤ P 1prq. l
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Since the image of Pm consists of one element for sufficiently large m, we can take the
smallest m such that |Pm´1pSrq| “ pk´1 for some r P Zp, but |PmpSqq| ď pk´2 for all q P Zp.

From now on, we fix m and r.
Since the image of Pm´1pZpkqzPm´1pSrq under P contains PmpZpkqzPmpSrq, we have

a :“ |PmpZpkqzPmpSrq| ď |Pm´1pZpkqzPm´1pSrq|,
thus

a` pk´1 ď fm´1,pk ď 2fm,pk ď 2pk´2 ` 2a,

so
pp´ 2qpk´2 ď a.

Since fi,p “ 1 for sufficiently large i, there is exactly one t P Zp such that P ptq ” t pmod pq.
Moreover, as i increases, the cardinality of the set ts P Zp | P ipsq ” t pmod pqu increases
(strictly), until it reaches the value p. So either

|ts P Zp | Pm´1psq ” t pmod pqu| “ p or |ts P Zp | Pm´1psq ” t pmod pqu| ě m.

Therefore, either fm´1,p “ 1 or there exists a subset X Ă Zp of cardinality at least m such
that Pm´1pxq ” t pmod pq for all x P X .

In the first case |Pm´1pZpkq| ď pk´1 “ |Pm´1pSrq|, so a “ 0, a contradiction.
In the second case let Y be the set of all elements of Zpk congruent to some element of X

modulo p. Let Z “ ZpkzY . Then Pm´1pY q Ă St, P pStq Ĺ St, and Z “ Ť
iPZpzX Si, so

|PmpY q| ď |P pStq| ď pk´2 and |PmpZq| ď |ZpzX| ¨ pk´2 ď pp´mqpk´2.

Hence,
pp´ 2qpk´2 ď a ă |PmpZpkq| ď |PmpY q| ` |PmpZq| ď pp´m` 1qpk´2

and m ă 3. Then |P 2pSqq| ď pk´2 for all q P Zp, so

pk{4 ď |P 2pZpkq| ď pk´1,

which is impossible for p ě 5. It remains to consider the case p “ 3.
As before, let t be the only residue modulo 3 such that P ptq ” t pmod 3q.
If 3 ∤ P 1ptq, then P pStq “ St by the proof of the Claim above, which is impossible.
So 3 | P 1ptq. By substituting h “ 3is into the formula P pt` hq “ P ptq` hP 1ptq ` h2Qpt, hq,

we obtain P pt`3isq ” P ptq pmod 3i`1q. Using induction on i we see that all elements of P ipStq
are congruent modulo 3i`1. Thus, |P k´1pStq| “ 1.

Note that f1,3 ď 2 and f2,3 ď 1, so P 2pZ3kq Ă St. Therefore, |P k`1pZ3kq| ď |P k´1pStq| “ 1.
It follows that 3k ď 2k`1, which is impossible for k ě 2.

Comment. Here is an alternative version of the problem.

A function f : Z Ñ Z is chosen so that a´ b | f paq ´ f pbq for all a, b P Z with a ‰ b. Let S0 “ Z,
and for each positive integer m, let Sm denote the image of f on the set Sm´1. It is given that, for
each nonnegative integer m, there are exactly rn{2ms distinct residues modulo n in the set Sm. Find
all possible values of n.

Answer: All powers of primes.

Solution. Observe that f can be regarded as a function Zℓ Ñ Zℓ for any positive integer ℓ. We use
notations fm and fm,ℓ as in the above solution.
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Part 1. There exists a function f : Zpk Ñ Zpk satisfying the desired properties.

For x P Zpk , let revpxq denote the reversal of the base-p digits of x (we write every x P Zpk with
exactly k digits, adding zeroes at the beginning if necessary). Choose

f pxq “ rev

ˆZ
revpxq

2

^˙
where, for dividing by 2, revpxq is interpreted as an integer in the range r0, pkq. It is easy to see that
fm`1,k “ rfm,k{2s.

We claim that if a, b P Zpk so that pm|a´ b, then pm|f paq ´ f pbq. Let x “ revpaq, y “ revpbq. The
first m digits of x and y are the same, i.e tx{pm´ku “ ty{pm´ku. For every positive integers c, d and z

we have ttz{cu{du “ tz{pcdqu “ ttz{du{cu, soY
tx{2u{pm´k

]
“
Y
tx{pm´ku{2

]
“
Y
ty{pm´ku{2

]
“
Y
ty{2u{pm´k

]
.

Thus, the first m digits of tx{2u and ty{2u are the same. So the last m digits of f paq and f pbq are the
same, i.e. pm|f paq ´ f pbq.
Part 2. Lifting the function f : Zpk Ñ Zpk to a function on all of Z.

We show that, for any function f : Zpk Ñ Zpk for which gcdppk, a ´ bq | f paq ´ f pbq, there is
a corresponding function g : Z Ñ Z for which a ´ b | gpaq ´ gpbq for all distinct integers a, b and
gpxq ” f pxq pmod pkq for all x P Z, whence the proof will be completed. We will construct the values
of such a function inductively; assume that we have constructed it for some interval ra, bq and wish to
define gpbq. (We will define gpa´ 1q similarly.)

For every prime q ď |a´ b|, we choose the maximal αq for which there exists cq P ra, bq, such that
b´ cq

... qαq , and choose one such cq.
We apply Chinese remainder theorem to find gpbq satisfying the following conditions:

gpbq ” gpcqq pmod qαq q for q ‰ p, and

gpbq ” gpcpq pmod qαpq if αp ě k, gpbq ” f pbq pmod pkq if αp ă k.

It is not hard to verify that b´ c | gpbq ´ gpcq for every c P ra, bq and gpbq ” f pbq pmod pkq.
Part 3. The required function does not exist if n has at least two different prime divisors.

The proof is identical to the polynomial version.


