Problem 1. The Bank of Oslo issues two types of coin: aluminium (denoted A) and bronze (denoted B). Marianne has n aluminium coins and n bronze coins, arranged in a row in some arbitrary initial order. A chain is any subsequence of consecutive coins of the same type. Given a fixed positive integer $k \leqslant 2 n$, Marianne repeatedly performs the following operation: she identifies the longest chain containing the $k^{\text {th }}$ coin from the left, and moves all coins in that chain to the left end of the row. For example, if $n=4$ and $k=4$, the process starting from the ordering $A A B B B A B A$ would be

$$
A A B \underline{B} B A B A \rightarrow B B B \underline{A} A A B A \rightarrow A A A \underline{B} B B B A \rightarrow B B B \underline{B} A A A A \rightarrow B B B \underline{B} A A A A \rightarrow \cdots .
$$

Find all pairs (n, k) with $1 \leqslant k \leqslant 2 n$ such that for every initial ordering, at some moment during the process, the leftmost n coins will all be of the same type.

Problem 2. Let \mathbb{R}^{+}denote the set of positive real numbers. Find all functions $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$such that for each $x \in \mathbb{R}^{+}$, there is exactly one $y \in \mathbb{R}^{+}$satisfying

$$
x f(y)+y f(x) \leqslant 2 .
$$

Problem 3. Let k be a positive integer and let S be a finite set of odd prime numbers. Prove that there is at most one way (up to rotation and reflection) to place the elements of S around a circle such that the product of any two neighbours is of the form $x^{2}+x+k$ for some positive integer x.

Problem 4. Let $A B C D E$ be a convex pentagon such that $B C=D E$. Assume that there is a point T inside $A B C D E$ with $T B=T D, T C=T E$ and $\angle A B T=\angle T E A$. Let line $A B$ intersect lines $C D$ and $C T$ at points P and Q, respectively. Assume that the points P, B, A, Q occur on their line in that order. Let line $A E$ intersect lines $C D$ and $D T$ at points R and S, respectively. Assume that the points R, E, A, S occur on their line in that order. Prove that the points P, S, Q, R lie on a circle.

Problem 5. Find all triples (a, b, p) of positive integers with p prime and

$$
a^{p}=b!+p .
$$

Problem 6. Let n be a positive integer. A Nordic square is an $n \times n$ board containing all the integers from 1 to n^{2} so that each cell contains exactly one number. Two different cells are considered adjacent if they share a common side. Every cell that is adjacent only to cells containing larger numbers is called a valley. An uphill path is a sequence of one or more cells such that:
(i) the first cell in the sequence is a valley,
(ii) each subsequent cell in the sequence is adjacent to the previous cell, and
(iii) the numbers written in the cells in the sequence are in increasing order.

Find, as a function of n, the smallest possible total number of uphill paths in a Nordic square.

